124. In situ structural observation of a substrate- and peroxide-bound high-spin ferric-hydroperoxo intermediate in P450 enzyme CYP121
Nguyen RC, Davis I, Dasgupta M, Wang Y, Simon P, Butryn A, Makita H, Bogacz I, Dornevil K, Aller P, Bhowmick A, Chatterjee R, Kim I-S, Zhou T, Mendez D,
  Paley, D, Fuller F, Alonso Mori R, Batyuk A, Sauter N, Brewster A, Orville AM, Yachandra V, Yano J,
Kern J,* and Liu A*
J. Am. Chem. Soc., 2023, accepted for publication (DOI:
10.1021/jacs.xxxxx (pending))
 
123. Structural and spectroscopic characterization of RufO indicates a new biological role in rufomycin biosynthesis
 Jordan S, Li B, Traor E, Wu Y, Usai R, Liu A, Xie Z-R, Wang Y*
 J. Biol. Chem.
2023, 299, 105049 (DOI: 10.1016/j.jbc.2023.105049)
              
 
122. Simultaneous separation and detection of nine kynurenine pathway metabolites by reversed-phase liquid chromatography-mass spectrometry: Quantitation of inflammation in human cerebrospinal fluid and plasma
 Patel VD, Shamsi SA*, Miller A, Liu A, and Powell M
 Anal. Chim. Acta
2023, 1278, 341659 (DOI: 10.1016/j.aca.2023.341659)
              
 
121. Structural insights into the half-of-sites reactivity in homodimeric and homotetrameric metalloenzymes
Nguyen RC, Stagliano C, and Liu A*
Curr. Opin. Chem. Biol, 2023, 75:102332 (DOI:
10.1016/j.cbpa.2023.102332)
 
120. Kynurenine pathway regulation at its critical junctions with fluctuation of tryptophan
Newton A, McCann L, Huo L, and Liu A*
Metabolites 2023, 13, 500 (DOI:
10.3390/metabo13040500)
 
119. Quantitation of tryptophan and kynurenine in human plasma using 4-vinylphenylboronic acid column by capillary electrochromatography coupled with mass spectrometry
Patel VD, Shamsi SA*, Miller A, and Liu A
Electrophoresis 2023, 44, 529-539 (DOI: 10.1002/elps.202200251)
118. Charge maintenance during catalysis in non-heme iron oxygenases
Traore ES and Liu A*
ACS Catalysis 2022, 12(10), 6191-6208 (DOI:
10.1021/acscatal.1c04770)
 
117. Probing extradiol dioxygenase mechanism in NAD+ biosynthesis by viewing reaction cycle intermediates
 Davis I and Liu A*
 Encyclopedia of Inorganic and Bioinorganic Chemistry (EIBC)
2022, 1-8 (DOI: 10.1002/9781119951438.eibc2813)
              
 
116. Metalloenzymes involved in carotenoid biosynthesis in plants
 Davis I*, Geng J, and Liu A*
 Methods Enzymol.
2022, 671, 207-222 (DOI: 10.1016/bs.mie.2022.01.012)
              
 
115. A new regime of heme-dependent aromatic oxygenase superfamily
Shin I, Wang Y, and Liu A*
 
Proc. Natl. Acad. Sci. U.S.A.
2021, 118(43), e210656 (10/26/2021) (DOI: 10.1073/pnas.2106561118)
 
 
114.  Crystal structure of human cysteamine dioxygenase provides a structural rationale for its function as an oxygen sensor
  Wang Y, Shin I, Li J, and Liu A*
 
J. Biol. Chem.
2021, 297(4), article 101176, 1-10 (DOI:
10.1016/j.jbc.2021.101176)
 
Narrator: Yifan (Amber) Wang
 
113.  HygY is a twitch radical SAM epimerase with latent dehydrogenase activity revealed upon mutation of a single cysteine residue
  Besandre R, Chen Z, Davis I, Zhang J, Ruszczycky M, Liu A, and Liu H-w*
  J. Am. Chem. Soc. 2021, 143(37), 15152–15158 (DOI: 10.1021/jacs.1c05727)
112.  Capillary electrochromatography-mass spectrometry of kynurenine pathway metabolites
  Chawdhury A, Shamsi SA*, Miller A, and Liu A
  J. Chromatogr. A. 2021, 1651, 462294 (1-14) (DOI: 10.1016/j.chroma.2021.462294)
111.  Molecular rationale for partitioning between C-H and C-F bond activation in heme-dependent tyrosine hydroxylase
  Wang Y, Davis I, Shin I, Xu H, and Liu A*
 
J. Am. Chem. Soc.
2021, 143(12), 4680-4693 (DOI:
10.1021/jacs.1c00175)
 
MP4, 8'52"
110.  A novel catalytic heme cofactor in SfmD with a single thioether bond and a bis-His ligand set revealed by de novo crystal structural and spectroscopic study
  Shin I, Davis I, Nieves-Merced K, Wang Y, McHardy S, and Liu A*
 
Chem. Sci.
2021, 12(11), 3984-3998 (Edge Article) (DOI:
10.1039/D0SC06369J)               
 
Inchul Shin
(MP4, 13'24")
109.  Heme binding to HupZ with a C-terminal tag from Group A Streptococcus
  Traore ES, Li J, Chiura T, Geng J, Sachla A, Yoshimoto F, Eichenbaum Z, Davis I, Max P*, and Liu A*
 
Molecules
2021, 26(3), 549 (DOI:
10.3390/molecules26030549)               
 
Narrator: Ephrahime S. Traore
 (LiveSlides: pending)
108.  Diflunisal derivatives as modulators of ACMS decarboxylase targeting the tryptophan-kynurenine pathway
  Yang Y, Borel T, de Azambuja F, Johnson D, Sorrentino JP, Udokwu C, Davis I, Liu A*, and Altman RA*
 
J. Med. Chem.
2021, 64(1), 797–811 (DOI:
10.1021/acs.jmedchem.0c01762)               
 
Narrator:
(LiveSlides: not available)
107.  Formation of monofluorinated radical cofactor in galactose oxidase through copper-mediated C−F bond scission
  Li J, Davis I, Griffith WP, and Liu A*
 
J. Am. Chem. Soc.
2020, 142(44), 18753-18757 (DOI:
10.1021/jacs.0c08992)               
 
Narrator: Jiasong Li
(MP4, 7'39")
106.  Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens
  Wang Y, Liu KF, Yang Y, Davis I, and Liu A*
 
Proc. Natl. Acad. Sci. U.S.A.
2020, 117(33) 19720-19730 (PNAS Direct Submission) (DOI: 10.1073/pnas.2005327117)
              
 
Narrators: Yifan Wang & Ian Davis
(This is an enzyme action movie published by PNAS)
105.  Characterization of the non-heme iron center of cysteamine dioxygenase and its interaction with substrates
  Wang Y, Davis I, Yang Y, Chen Y, Naik SG, Griffith WP, and Liu A*
 
J. Biol. Chem.
2020, 295(33), 11789-11802 (DOI: 10.1074/jbc.RA120.013915)
              
 
Narrator: Yifan Wang
104. Kinetic and spectroscopic characterization of the catalytic ternary complex of tryptophan 2,3-dioxygenase
Geng J, Weitz AC, Dornevil K, Hendrich MP, and Liu A*
Biochemistry 2020, 59(30), 2813-2822 (DOI:
10.1021/acs.biochem.0c00179)
 
103.  Carbon-fluorine bond cleavage mediated by metalloenzymes
  Wang Y and Liu A*
 
Chem. Soc. Rev.
2020, 49(14), 4906-4925 (DOI:
10.1039/C9CS00740G)               
 
Narrator: Yifan Wang
(pending)
102.  Substrate-assisted hydroxylation and O-demethylation in the peroxidase-like cytochrome P450 enzyme CYP121
  Nguyen RC, Yang Y, Wang Y, Davis I, and Liu A*
 
ACS Catalysis
2020, 10(2), 1628-1639  (DOI:
10.1021/acscatal.9b04596)               
 
Narrator: Romie C. Nguyen
101.  Crystal structures of L-DOPA dioxygenase from Streptomyces sclerotialus
  Wang Y, Shin I, Fu Y, Colabroy KL*, and Liu A*
 
Biochemistry
2019, 58(52), 5339-5350  (DOI:
10.1021/acs.biochem.9b00396)               
  (invited original contribution for a special issue “Current Topics in Mechanistic Enzymology 2019”)
 
Narrators: Yifan Wang & Inchul Shin
100.
Quaternary structure of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) controls its activity
(Running title: Protein quaternary structure as a means to regulate activity)
  Yang Y, Davis I, Matsui T, Rubalcava I, and Liu A*
 
J. Biol. Chem.
2019, 294(30), 11609-11621  (DOI:
10.1074/jbc.RA119.009035)   (LiveSlide
video presentation)
  featured as a JBC cover story
99. Biocatalytic carbon-hydrogen and carbon-fluorine bond cleavage through hydroxylation promoted by a histidyl-ligated heme enzyme
Wang Y, Davis I, Shin I, Wherritt DJ, Griffith WP, Dornevil K, Colabroy KL, and Liu A*
ACS Catalysis 2019, 9(6), 4764-4776 (DOI:
10.1021/acscatal.9b00231) featured as an ACS Editors’ Choice article
 

Narrators: Yifan Wang and Ian Davis
(Short version published by ACS: 8 slides)
98. Probing the Cys-Tyr cofactor biogenesis in cysteine dioxygenase by the genetic incorporation of fluorotyrosine
Li J, Koto, T, Davis I, and Liu A*
Biochemistry
2019, 58(17), 2218-2227 (DOI:
10.1021/acs.biochem.9b00006) featured as an alternate ACS Biochemistry cover story
97. Cleavage of a carbon–fluorine bond by an engineered cysteine dioxygenase
Li J, Griffith WP, Davis I, Shin I, Wang J, Li F, Wang Y, Wherritt D, and Liu A*
Nat. Chem. Biol. 2018, 14(9), 853-860 (DOI:
10.1038/s41589-018-0085-5)
 
96. Backbone dehydrogenation in pyrrole-based pincer ligands
Krishnan VM, Davis I, Baker TM, Curran DJ, Arman H, Neidig ML, Liu A, and Tonzetich ZJ*
Inorg. Chem. 2018, 57(15), 9544-9553 (DOI:
10.1021/acs.inorgchem.8b01643)
95. Adapting to oxygen: 3-Hydroxyanthranilate 3,4-dioxygenase employs loop dynamics to accommodate two substrates with disparate polarities
Yang Y, Liu F*, and Liu A*
J. Biol. Chem.
2018, 293(27), 293, 10415-10424  (DOI:
10.1074/jbc.RA118.002698)                  
                
featured as a JBC cover story
94. Cofactor biogenesis in cysteamine dioxygenase: C-F bond cleavage with genetically incorporated unnatural tyrosine
Wang Y, Griffith WP, Li J, Koto, T, Wherritt D, Fritz E, and Liu A*
Angew. Chem. Int. Ed. 2018, 57(27), 8149-8153  (DOI: 10.1002/ange.201803907
& 10.1002/anie.201803907)
93. Reassignment of the human aldehyde dehydrogenase ALDH8A1 (ALDH12) to the kynurenine pathway in tryptophan catabolism
  Davis I, Yang Y, Wherritt D, and Liu A*
J. Biol. Chem. 2018, 293(25), 9594-9603 (DOI:
10.1074/jbc.RA118.003320)
92. Stepwise O-atom transfer in heme-based tryptophan dioxygenase: Role of substrate ammonium in epoxide ring opening
Shin I, Ambler BR, Wherritt DJ, Griffith WP, Maldonado AC, Altman RA, and Liu A*
J. Am. Chem. Soc.
2018, 140(12), 4372-4379 (DOI:
10.1021/jacs.8b00262)
91. High-frequency/high-field EPR and theoretical studies of tryptophan-based radicals
Davis I, Koto T, Terrell JR, Kozhanov A, Krzystek J, and Liu A*
J. Phys. Chem. A 2018, 122(12), 3170-3176 (DOI:
10.1021/acs.jpca.7b12434)
90. Radical trapping study of the relaxation of bis-Fe(IV) MauG
Davis I, Koto T, and Liu A*
Reactive Oxygen Species, 2018, 5(13), 46-55 (DOI:
10.20455/ros.2018.801)
89.  
Probing ligand exchange in the P450 enzyme CYP121 from Mycobacterium tuberculosis:
Dynamic equilibrium of the distal heme ligand as a function of pH and temperature
Fielding AJ, Dornevil K, Ma L, Davis I, and Liu A*
J. Am. Chem. Soc.
2017, 139(48), 17484-17499 (DOI:
10.1021/jacs.7b08911)
88. Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron-hole hopping within the enzyme
Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, and Goodwin DC*
J. Biol. Chem., 2017, 292(45), 18408-18421 (DOI:
10.1074/jbc.M117.791202)
87. Cross-linking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway
Dornevil K, Davis I, Fielding AJ, Terrell JR, Ma L, and Liu A*
J. Biol. Chem., 2017, 292(33), 13645-13657 (DOI:
10.1074/jbc.M117.794099)
86. Hypertryptophanemia due to tryptophan 2,3-dioxygenase deficiency
Ferreira F,* Shin I, Sosova I, Dornevil K, Jain Shailly, Dewey D, Liu F, and Liu A*
Mol. Genet. Metab.,
2017, 120(4), 317-324 (DOI:
10.1016/j.ymgme.2017.02.009)
85. Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics
Wang Y, Li J, and Liu A*
J. Biol. Inorg. Chem., 2017, 22(2), 395-405 (DOI:
10.1007/s00775-017-1436-5)
(invited article for a special issue
of the journal under the theme of 60 Years of Oxygen Activation)
84.
Heterolytic O-O bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG
Geng J, Huo L, and Liu A*
J. Inorg. Biochem., 2017, 167, 60-67 (DOI:
10.1016/j.jinorgbio.2016.11.013)
83.
A pitcher-and-catcher mechanism drives endogenous substrate isomerization by a dehydrogenase in kynurenine metabolism  
Yang Y, Davis I, Ha U, Wang Y, Shin I, and Liu A*
J. Biol. Chem., 2016, 291(51), 26252-26261 (DOI:
10.1074/jbc.M116.759712)
(featured as "Papers of the Week
and selected, after publication, in a collection of Enzymology virtual issue)
82.
Control of carotenoid biosynthesis through a heme-based cis-trans isomerase
Beltrán J, Kloss B, Hosler JP, Geng J, Liu A, Modi A, Dawson JH, Sono M, Shumskaya M, Ampomah-Dwamena C, Love JD, and Wurtzel ET*
Nat. Chem. Biol., 2015, 11(8), 598-605 (DOI:
10.1038/nchembio.1840)
81.
What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? (Invited Editorial)
  Davis I and Liu A*
Expert Review of Neurotherapeutics, 2015, 15(7), 719-721 (DOI:
10.1586/14737175.2015.1049999)
80.
An iron reservoir to the catalytic metal: The rubredoxin iron in an extradiol dioxygenase Liu F, Geng J, Gumpper RH, Barman A, Davis I, Ozarowski A, Hamelberg D, and Liu A*  
J. Biol. Chem., 2015, 290(25), 15621-15634  (DOI: 10.1074/jbc.M115.650259)
79.
Probing bis-Fe(IV) MauG: Experimental evidence for the long-range charge-resonance model Geng J, Davis I, and Liu A*
Angew. Chem. Int. Ed., 2015, 54, 3692-3696  (DOI: 10.1002/ange.201410247 & 10.1002/anie.201410247)
78.
Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action
Huo L, Davis I, Liu F, Andi B, Esaki S, Hiroaki I, Li T, Hasegawa Y, Orville AM, and Liu A*
Nat. Commun.,
2015, 6:5935 (DOI: 10.1038/ncomms6935)
77.
Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): A structural and mechanistic unveiling Huo L, Liu F, Hiroaki I, Li T, Hasegawa Y, and Liu A*
Proteins, 2015, 83(1), 178-187 (DOI: 10.1002/prot.24722)
76.
Bis-Fe(IV): Nature's sniper for long-range oxidation Geng J, Davis I, Liu F, and Liu A*
J. Biol. Inorg. Chem.
 
(This paper provides further experimental evidence supporting the biological Charge Resonance
stabilization phenomenon described in our manuscript #71).
(This article defines the structure of a kynurenine pathway dehydrogenase and a sp3-to-sp2
transition during catalysis)
75. Amidohydrolase Superfamily
Liu A* and Huo L
 
Encyclopedia of Life Sciences,
2014, 1-11 (DOI: 10.1002/9780470015902.a0020546.pub2)
74. Heme-dependent dioxygenases in tryptophan oxidation
Geng J and Liu A*
 
Arch. Biochem. Biophys.,
2014, 544, 18-26 (Invited Review Article) (DOI: 10.1016/j.abb.2013.11.009)
73.
The Power of two: Arginine 51 and arginine 239* from a neighboring subunit are essential for catalysis in
α-amino-β-carboxymuconate-ε-semialdehyde
decarboxylase
Huo L, Davis I, Chen L, and Liu A*
 
J. Biol. Chem., 2013, 288(43), 30862-30871 (DOI: 10.1074/jbc.M113.496869)
72. Pirin is an iron-dependent redox regulator of NF-κB
Liu F, Rehmani I, Esaki S, Fu R, Chen L, Serroano V, and Liu A*
Proc. Natl. Acad. Sci. U.S.A., ,
2013, 110(24), 9722-9727 (PNAS Direct Submission) (DOI:
10.1073/pnas.1221743110)
(** Faculty of 1000 recommended article
)
71. Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG
Geng J, Dornevil K, Davidson VL, and Liu A*
Proc. Natl. Acad. Sci. U.S.A., ,
2013, 110(24), 9639-9644 (PNAS Direct Submission) (DOI: 10.1073/pnas.1301544110)
70. Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis
Yukl ET, Liu F, Krzystek J, Shin S, Jensen LMR, Davidson VL, Wilmot CM,* and Liu A*
Proc. Natl. Acad. Sci. U. S. A., ,
2013, 110(12), 4569-4573 (PNAS Direct Submission) (DOI: 10.1073/pnas.1215011110)
* Faculty of 1000 recommended article
69. Development of a CZE-ESI-MS assay with a sulfonated capillary for profiling picolinic acid and quinolinic acid formation in multienzyme system
Wang X, Davis I, Liu A,* and Shamsi SA*
Electrophoresis,
2013, 34(12), 1828-1835 (DOI: 10.1002/elps.201200679)
68. An unexpected copper catalyzed 'reduction' of an arylazide to amine through the formation of a nitrene intermediate
Peng H, Dornevil K, Draganov A, Chen W, Dai C, Nelson WH, Liu A,* and Wang B*
Tetrahedron, 2013, 69, 5079-5085 (dedicated to the memory of Professor William H. Nelson) (DOI:
10.1016/j.tet.2013.04.091)
67. Improved separation and detection of picolinic acid and quinolinic acid by capillary electrophoresis-mass spectrometry: Application to the analysis of human cerebrospinal fluid
Wang X, Davis I, Liu A, Miller A, and Shamsi SA*
J. Chromatogr. A., 2013, 1316, 147-153 (DOI: doi.org/10.1002/elps.201200679)
66.
Chemical rescue of the distal histidine mutants of tryptophan 2,3-dioxygenase
Geng J, Dornevil K, and Liu A*
J. Am. Chem. Soc., 2012, 134, 12209-12218
(DOI: 10.1021/ja304164b)
65.
Evidence for a dual role of an active site histidine in α
-amino-β
-
carboxymuconate-
ε
-
semialdehyde decarboxylase
Huo L, Fielding AJ, Chen Y, Li T, Iwaki H, Hosler JP, Chen L, Hasegawa Y, Que Jr, L, and Liu A*
Biochemistry, 2012,
51(29), 5811-5821 (DOI:
doi.org/10.1021/bi300635b)
64. Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity
Tarboush NA, Shin S, Geng J, Liu A, and Davidson VL*
FEBS Lett., 2012, 586, 4339-4343 (DOI: 10.1016/j.febslet.2012.10.044)
63.
Decarboxylation mechanisms in biological system
Li T, Huo L, Pulley C, and Liu A*
Bioorg. Chem.,
2012,
43, 2-14 (DOI:
10.1016/j.bioorg.2012.03.001)
62.
The role of calcium in metalloenzyme: Effects of calcium removal on the axial ligation geometry and magnetic properties of the catalytic diheme center in MauG
Chen Y, Naik SG, Krzystek J, Shin S, Nelson WH, Xue S, Yang JJ, Davidson VL, and Liu A*
Biochemistry,
2012, 51, 1586-1597 (DOI:
10.1021/bi201575f)
61.
Tryptophan tryptophylquinone biosynthesis: A radical approach to posttranslational modification
Davidson VL and Liu A
Biochim. Biophys. Acta,
2012, 1824, 1299-1305
(DOI:
10.1016/j.bbapap.2012.01.008)
60.
Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG
Feng M, Jensen LMR, Yukl ET, Wei X, Liu A, Wilmot CM, and Davidson VL*
Biochemistry,
2012, 51(8), 1598-1606
(DOI:
10.1021/bi201882e)
59.
The roles of Rhodobacter sphaeroides copper chaperones PCuAC and Sco (PrrC) in the assembly of the copper centers of the aa3-type and the cbb3-type cytochrome c oxidases
Thompson AK, Gray J, Liu A, Hosler JP*
Biochim. Biophys. Acta,
2012, 1817, 955-964
58.
Synthesis, characterisation, and preliminary in vitro studies of vanadium(IV) complexes with a schiff base and thiosemicarbazones as mixed ligands
Lewis NA, Liu F, Seymour L, Magnusen A, Erves TR, Arca JF, Beckford FA, Venkatraman R, González-Sarrías A, Fronczek FR, VanDerveer DG, Seeram NP, Liu A, Jarrett WJ, Holder AH*
Eur. J. Inorg. Chem., 2012
,
4, 664-677
57.
Mutagenesis of tryptophan199 suggests that electron hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis
Tarboush NA, Jensen LMR, Yukl ET, Geng J, Liu A,
Wilmot CM, and Davidson VL
Proc. Natl. Acad. Sci. U.S.A.,
2011, 108(41), 16956-16961
56.
The reactivation mechanism of tryptophan 2,3-dioxygenase by hydrogen peroxide
Fu R, Gupta R, Geng J, Dornevil K, Wang S,
Hendrich MP, and Liu A*
J. Biol. Chem.,
2011,
286(30), 26541-26554
55.
Nature's strategy for oxidizing tryptophan: EPR and Mössbauer characterization of the
unusual high-valent heme iron intermediates/p>
in:
Mössbauer Spectroscopy: Applications in Chemistry, Biology,
Industry, and Nanotechnology.
Dornevil K and Liu A,* edited by Virender
K. Sharma, Goestar Klingelhoefer, and Tetsuaki Nishida, 2013, pp. 315-323
ISBN
978-1-118-05724-7
54. Redox and oxygen sensing in the regulation of transcription by metalloproteins
in:
Molecular Basis of Oxidative Stress: Chemistry, Mechanisms, and Disease Pathogenesis.
Rehmani I, Liu F and Liu A,* edited by Frederick A. Villamena,
John Wiley & Sons, Inc., 2013, pp. 179-201
ISBN
978-0-470-57218-4
53.
The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis
Shin S, Feng M, Chen Y, Jensen LMR, Tachikawa H, Wilmot CM, Liu A,
and Davidson VL*
Biochemistry,
2011, 50, 144-150
(DOI:
10.1021/bi101819m)
52. Proline 96 of
the copper ligand loop of amicyanin regulates electron transfer from methylamine dehydrogenase by positioning other residues
at the protein-protein interface
Choi M, Sukumar N, Mathews FS, Liu A,
and Davidson VL*
Biochemistry, 2011, 50(7), 1265-1273
(DOI:
10.1021/bi101794y)
51.
Gupta R, Fu R, Liu A, and Hendrich MP*
J. Am. Chem. Soc.,
2010, 132(3), 1098-1109
(DOI:
10.1021/ja908851e)
50. Mutagenic analysis of Cox11 of Rhodobacter sphaeroides:
Insights into the assembly of CuB of cytochrome c oxidase
Thompson, AK,
Smith D, Gray J, Carr HS, Liu A,
Winge DR, Hosler JP*
Biochemistry, 2010, 49(27), 5651-5661
(DOI:
10.1021/bi1003876)
49. Heme iron nitrosyl complex of MauG reveals efficient
redox equilibrium between hemes with only one heme exclusively binding exogenous ligands
Fu R, Liu F, Davidson VL, and Liu A*
Biochemistry, 2009, 48(49), 11603-11605
(DOI:
10.1021/bi9017544)
48.
Electron Paramagnetic Resonance (EPR) in Enzymology
Liu A
Wiley
Encyclopedia of Chemical Biology,
2008,
1, 591-601
(DOI:
10.1002/9780470048672.wecb668)
47. A single EF-hand isolated from STIM1
forms dimer in the absence and presence of Ca2+
Huang Y,
Zhou Y, Wong HC, Chen Y, Wang
S, Castiblanco A, Liu A, Yang JJ*
FEBS J. 2009, 276, 5589-5597
(DOI:
10.1111/j.1742-4658.2009.07240.x)
46. Defining the role of the axial ligand of the type 1 copper site in amicyanin by replacement of
methionine with leucine
Choi M, Sukumar N, Liu A, and Davidson VL*
Biochemistry, 2009, 48(39), 9174-9184
(DOI:
10.1021/bi900836h)
45. A catalytic di-heme bis-Fe(IV) form of MauG,
Alternative to an Fe(IV)=O porphyrin radical
Li X, Fu R,
Lee S, Krebs C, Davidson VL,* and Liu A*
Proc. Natl. Acad. Sci. U.S.A.,
2008,
105(25), 8597-8600 (PNAS Direct Submission)
(DOI:
10.1073/pnas.0801643105)
44. Kinetic and physical evidence that the di-heme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed
tryptophan tryptophylquinone
Li X, Fu R, Liu A*,
and Davidson VL*
Biochemistry, 2008,
47(9), 2908–2912 (DOI:
10.1021/bi702259w)
43. Purification and characterization of the epoxidase catalyzing the formation of
fosfomycin from Pseudomonas syringae
Munos JW, Moon
S-J, Mansoorabadi SO, Hong L, Yan F, Liu A,
and Liu H-w*
Biochemistry, 2008, 47(33),
8726–8735
(DOI:
10.1021/bi800877v)
42. Amidohydrolase Superfamily
Liu A*, Li T, and Fu R
Encyclopedia of Life Sciences, 2007, 1-8
(DOI:
10.1002/9780470015902.a0020546)
41. Determination of the substrate binding
mode to the active site iron of (S)-2-hydroxypropyl phosphonic
acid epoxidase using 17O-enriched
substrates
Yan F, Moon S-J, Liu P, Zhao Z, Lipscomb JD, Liu A,
and Liu H-w*
Biochemistry, 2007, 46(44), 12628-12638
(DOI:
10.1021/bi701370e)
40. Detection of transient intermediates in the
metal-dependent non-oxidative decarboxylation catalyzed by
α-amino-β-carboxymuconic-ε-semialdehyde decarboxylase
 
Li T, Ma J, Hosler JP, Davidson
VL, and Liu A*
J. Am. Chem. Soc.,
2007, 129(30), 9278-9279
(DOI:
10.1021/ja073648le)
39. Crystallographic analysis of
α-amino-β-carboxymuconic-ε-semialdehyde decarboxylase:
Insight into the
active site and catalytic mechanism of a novel decarboxylation reaction
Martynowski D., Eyobo Y., Li T, Yang K., Liu A,* and Zhang H*
Biochemistry
2006, 45(21), 10412-10421 (DOI:
10.1021/bi060108c)
38. Transition metal-catalyzed nonoxidative decarboxylation reactions
Liu A* and Zhang H
Biochemistry, 2006, 45(35), 10407-10411 (a New Concept paper) (DOI:
10.1021/bi061031v)
37. α-Amino-b-carboxymuconic-ε-semialdehyde
decarboxylase (ACMSD) is
a new member of the amidohydrolase superfamily
Li T, Iwaki H, Fu R, Hasegawa Y, Zhang H, Liu A*
Biochemistry, 2006, 45(21), 6628-6634 (DOI:
10.1021/bi060108c)
36. The mechanism of inactivation of
3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3 hydroxyanthranilate
Colabroy KL, Zhai H, Li T, Ge Y, Zhang Y, Liu A, Ealick SE, McLafferty
FW, and Begley TP*
Biochemistry, 2005, 44(21), 7623–7631
35. Kinetic and spectroscopic
characterization of ACMSD from Pseudomonas fluorescens
reveals a pentacoordinate mononuclear metallocofactor
Li T, Walker AL, Iwaki H, Hasegawa Y, Liu A*
J. Am. Chem. Soc., 2005, 127(35),
12282–12290
34. Site-directed mutagenesis and spectroscopic
studies of the iron-binding site of (S)-2 hydroxypropylphosphonic acid epoxidase
Yan F, Li T, Lipscomb JD, Liu A, and Liu HW*
Arch. Biochem. Biophys.,
2005, 442, 82–91
33. Substrate radical intermediates in
soluble methane monooxygenase
Liu A, Jin Y, Zhanga
J, Brazeaua BJ and Lipscomb JD.
Biochem. Biophys. Res. Commun., 2005, 338, 254–261
32. Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H
making/breaking at the diiron cluster with concerted
proton and electron transfers
Zhou T, Mo Y, Liu A, and Tsai KR
Inorg. Chem., 2004, 43(3), 923–930
31. An engineered CuA
amicyanin capable of intramolecular
electron transfer reactions
Jones LH, Liu A, and Davidson VL*
J. Biol. Chem., 2003, 278(47),
47269–47274
30. MauG, a novel
di-heme protein required for tryptophan tryptophylquinone biogenesis
Wang Y., Graichen ME, Liu A, Pearson AR, Wilmot CM, and
Davidson VL*
Biochemistry, 2003, 42, 7318–7325
29. O2- and α-ketoglutarate-dependent tyrosyl
radical formation in TauD, an α-keto acid dependent non-heme iron
dioxygenase
Ryle
MJ, Liu A, Muthukumaran RB, Koehntop KD,
McCracken J, Que L Jr., and Hausinger
RP. Biochemistry, 2003, 42,
1854–1862
28. Biochemical and spectroscopic studies on
(S)-2-hydroxypropylphosphonic acid epoxidase: a novel
mononuclear non-heme iron enzyme
Liu
P, Liu A, Yan F, Wolfe
MD, Lipscomb JD, and Liu HW
Biochemistry, 2003, 42, 11577–11586
27. Interconversion
of two oxidized forms of taurine/α-ketoglutarate dioxygenase, a nonheme iron hydroxylase: Evidence for bicarbonate binding
Ryle
MJ, Koehntop KD, Liu A, Que L Jr,
and Hausinger RP
Proc. Natl. Acad. Sci. U.S.A., 2003, 100,
3790–3795
26. Reduction of Escherichia coli ribonucleotide reductase with ferrocene derivatives
Liu A, Leese DN, Swarts JC, and Sykes AG
Inorg. Chim. Acta, 2002, 337,
83–90 (special edition, invited paper) (DOI: 10.1016/S0020-1693(02)01102-7).
25. Resonance Raman studies of the Fe(II)-a-keto acid chromophore
Ho RYN, Mehn MP, Hegg EL, Liu
A, Ryle MJ, Hausinger RP, and Que
L Jr
J. Am. Chem. Soc., 2001, 123, 5022–5029
24. Alternative reactivity of an
α-ketoglutarate-dependent Fe(II)
oxygenase: enzyme self hydroxylation
Liu A, Ho RYN, Que L Jr, Ryle MJ, and Hausinger RP
J. Am. Chem. Soc., 2001, 123, 5126–5127
23. Chemical reduction of the diferric-radical center in protein R2 from mouse ribonucleotide reductase is
independent of the proposed radical transfer pathway
Davydov A, Ohrstrom
M, Liu A, and Gräslund A
Inorg. Chim. Acta, 2002, 331, 65–72
22. EPR evidence for a novel interconversion of [3Fe-4S]+ and [4Fe-4S]+ clusters with endogenous iron
and sulfide in anaerobic ribonucleotide reductase activase in vitro
Liu A and Gräslund A
J.
Biol. Chem., 2000, 275,
12367–12373
21. Yeast ribonucleotide reductase has a heterodimeric iron-radical-containing subunit
Chabes A, Domkin V, Larsson G, Liu
A, Gräslund A, Wijmenga
S, and Thelander L
Proc. Natl. Acad. Sci. U.S.A., 2000,
97, 2474–2479
20. Heterogeneity of the local electrostatic
environment of the tyrosyl radical in Mycobacterium tuberculosis ribonucleotide reductase observed
by high-field EPR spectroscopy
Liu A, Barra AL,
Rubin H, Lu G, and Gräslund A
J.
Am. Chem. Soc., 2000, 122, 1974–1978
19.
The anaerobic (class III) ribonucleotide reductase from Lactococcus lactis:
Catalytic properties and allosteric regulation of the pure enzyme system
Torrents
E, Buist G, Liu A, Eliasson R, Gibert I, Gräslund A, and Reichard P
J. Biol.
Chem., 2000, 275,
2463–2471
18. EPR evidence of two structurally
different ferric sites in Mycobacterium tuberculosis ribonucleotide
reductase R2-2 protein
Davydov A, Liu A, and Gräslund
A.
J. Inorg. Biochem., 2000, 80,
213–218
17. Sequential mechanism of methane
dehydrogenation over metal oxide and carbide catalysts
Zhou
T, Liu A, Mo Y, and Zhang
H
J.
Phys. Chem. A, 2000, 104,
4505–4513
16. The interaction between iron and the
protein radical in aerobic and anaerobic ribonucleotide
reductases
Liu
A. Doctoral Thesis, Akademitryck
AB 2000, Stockholm, Sweden, ISBN 91-7265-101-6, pp.
1-46
15. New paramagnetic species formed at the
expense of the transient tyrosyl radical in mutant protein
R2 F208Y of Escherichia coli ribonucleotide reductase
Liu A, Sahlin M, Potsch S, Sjöberg BM, Gräslund A
Biochem. Biophys. Res. Commun., 1998, 246, 740–745
14. The tyrosyl free
radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket
Liu A, Potsch S, Davydov A, Barra A,
Rubin H, and Gräslund A
Biochemistry, 1998, 37,
16369–16377
13. Optimal group symmetric localized
molecular orbitals
Zhou T and
Liu A.
Theoret. Chim. Acta, 1994, 88, 375-381.
12. Symmetry-adaptation of configuration
basis in MCSCF method
Zhou T and Liu A.
Theoret. Chim. Acta, 1994, 89, 137-145
11. Study of localized molecular orbitals
using group theory methods and its approach to the multi-electron correlation
problem: The symmetric reduction of multi-center integrals in multiconfigurational self-consistent-field approach
Zhou T and Liu
A
J. Comp. Chem., 1994, 15, 858-865
10. Oxygenation of methane to methanol by
methane monooxygenase of Methylomonas
species GYJ-3
Liu A and Li S
J. Nat. Gas Chem., 1993, 2, 109–118
9. Formation of propylene oxide by Methylomonas GYJ-3 in a gas-solid bioreactor
Li S, Gao C, and Liu A
Chinese Chem. Lett., 1991, 4, 303–306
8.
Studies on rationalization of nitrogenase active center models: novel nitrogenase inhibitors and promoters as chemical probes
Liu A, Zhang H, Yuan Y, Xu L, Wan H, and Tsai KR
Fen Zi Cui Hua (Chinese Journal of Molecular Catalysis)
, 1994, 8, 81–85
7.
Effects of bidentate ligands dppe and dppm on spontaneous self-assembly of Mo-Fe-S cluster compounds
Liu A, Yuan Y, Zhou M, Yong R, Zhang H, Wan H, and Tsai KR
J. Xiamen Univ. (Natural Science), 1994, 33(6), 809–813
6.
Structural information of nitrogenase active-center clusters deduced from the EHMO study
Liu A, Zhou T, Wan H, and Tsai KR
Chemical Journal of Chinese Universities,
1993, 14, 996–999
5.
The effects of gamma-ray irradiation of PET electret
Liu A, Wu H, and Zhou Y
J. Xiamen Univ. (Natural Science)
, 1993, 32(4), 457–461
4.
The effects of gamma-ray irradiation of PET electret
Liu A, Wu H, and Zhou Y
Journal of Xiamen University (Natural Science), 1993, 32(4), 457–461
3. Stereoselectivity
of styrene oxide from styrene epoxidation by Methylomonas sp. GYJ3
Liu A, Li S, Miao D,
Liu P, and Yu W
Fen Zi
Cui Hua (Chinese Journal of Molecular Catalysis), 1991, 5, 377–381
2.
Isolation and purification
of methane monooxygenase
from Methylomonas species
GYJ-3
Liu
A, Li S, Miao D, Yu W,
Zhang F, and Su P
Chinese
Chem. Lett., 1991, 2, 419–422
1. Preparative
slab electrofocusing of methane monooxygenase
from a type I methanotroph Methylomonas
GYJ-3
Liu A, Li S, Yu
W, Zhang F, Chen J, and Su P
Biochem. I., 1990, 22, 959-965
