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Abstract

Mammalian cysteamine dioxygenase (ADO), a mononuclear non-heme Fe(II) enzyme
with three histidine ligands, plays a key role in cysteamine catabolism and regulation
of the N-degron signaling pathway. Despite its importance, the catalytic mechanism
of ADO remains elusive. Here, we describe an HPLC-MS assay for characterizing thiol
dioxygenase catalytic activities and a metal-substitution approach for mechanistic
investigation using human ADO as a model. Two proposed mechanisms for ADO
differ in oxygen activation: one involving a high-valent ferryl-oxo intermediate. We
hypothesized that substituting iron with a metal that has a disfavored tendency to
form high-valent states would discriminate between mechanisms. This chapter details
the expression, purification, preparation, and characterization of cobalt-substituted
ADO. The new HPLC-MS assay precisely measures enzymatic activity, revealing
retained reactivity in the cobalt-substituted enzyme. The results obtained favor the
concurrent dioxygen transfer mechanism in ADO. This combined approach provides a
powerful tool for studying other non-heme iron thiol oxidizing enzymes.

1. Introduction

Thiol dioxygenases (TDOs) are a critical family of enzymes that play
a vital role in regulating cellular thiol metabolism. These non-heme iron-
dependent oxygenases, belonging to the Cupin superfamily, catalyze the
oxidation of thiol-containing molecules into sulfinic acids (Aloi, Davies,
Karplus, Wilbanks, & Jameson, 2019; Stipanuk, Simmons, Andrew
Karplus, & Dominy, 2011). Cysteamine (2-aminoethanethiol, 2-AET)
dioxygenase (ADO) and cysteine dioxygenase (CDO) are the only two
enzymes that regulate thiol metabolism in mammalian cells by oxidizing
thiol-bearing small molecules (Dominy, Simmons, Karplus, Gehring, &
Stipanuk, 2006; Dominy et al., 2007). Cysteamine dioxygenase (ADO)
stands out for its diverse substrate range. Unlike most TDOs, ADO oxi-
dizes small organic thiols like cysteamine and targets N-terminal cysteine
residues in signaling proteins or peptides involved in oxygen sensing
(Gunawardana, Heathcote, & Flashman, 2022; Masson et al., 2019). This
unique ability highlights the remarkable adaptability of ADO and under-
scores the need to further understand its reaction mechanism and dynamic
structure.

Despite performing similar functions, ADO belongs to the PFam family
PF07847 (PCO_ADO), which is distinct from PFam family PF05995
(CDO_I) that includes CDO and 3-mercaptopropionate dioxygenase
(MDO). Like plant cysteine oxidases (PCO) in the PCO_ADO family,
ADO also oxidizes N-terminal cysteine-containing signaling peptides that
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are involved in oxygen-sensing (Gunawardana et al., 2022; Masson et al.,
2019) (Fig. 1A). Therefore, ADO distinguishes itself by its broad spectrum
of substrates, inserting oxygen atoms from the dioxygen molecule (O2) into
small organic thiol substrates, cysteamine, and large protein substrates. The
dynamic structure of ADO, which accommodates two kinds of substrates
with distinct sizes and structures, and the reaction mechanism are attractive
topics in the emerging field of thiol dioxygenases.

Even though ADO has been purified from horse kidneys for more than
60 years (Cavallini, Scandurra, & De Marco, 1963; Cavallini, de Marco,
Scandurra, Dupre,́ & Graziani, 1966), it was not genetically identified and
heterologously expressed until 2007 (Dominy et al., 2007). Due to a
relatively slow autooxidation, the mononuclear iron center in as-isolated
ADO proteins has been shown to be present in mixed ferrous and ferric
forms by EPR spectroscopy (Fernandez, Dillon, Stipanuk, Fox, & Brunold,
2020; Rotilio, Federici, Calabrese, Costa, & Cavallini, 1970; Wang et al.,
2020). A Mössbauer spectroscopy study observed that 23% of iron is in the
Fe(III) form in as-isolated mouse ADO (Wang et al., 2020). The hetero-
geneous metal oxidation state inevitably introduces an inhomogeneous
coordination environment and corresponding variations in protein struc-
ture that are likely responsible for obstructing the crystallographic char-
acterization of this protein for a long period of time. Even though the Fe

Fig. 1 The reaction, structure, and catalytic mechanism of ADO. (A) Thiol dioxygenase
catalyzed reactions. R = H (ADO), −COO− (CDO); ADO and PCO catalyze certain
N-terminal Cys-containing peptides and proteins. (B) Active site architecture of human
ADO (Wang, Shin, Li, & Liu, 2021); (C) The key reaction intermediates in the two
proposed mechanisms. Left: Concurrent dioxygen transfer intermediate. Right: High-
valent ferryl-oxo intermediate.
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(II)-bearing mouse ADO has been crystallized (Fernandez et al., 2021), it
has been challenging to obtain a high-quality crystal structure for Fe(II)-
bearing human ADO. One method to overcome this technical challenge
associated with the metal oxidation state is to swap the Fe center with a Ni
ion, as we have done in a previous structural study (Wang, Li, & Liu,
2021). Along with the mutations of surface cysteine residues on ADO to
suppress the expected nonhomogeneous disulfide bond formation, the
crystal structure of human ADO has been successfully determined at 1.78 Å
resolution (Wang, Li, & Liu, 2021) (Fig. 1B). This success inspired us to
generate ADO proteins with different metal centers and take advantage of
their unique chemical and physical properties to decipher the catalytic
mechanism of ADO.

The catalytic mechanism of TDOs remains debatable despite substantial
structural and spectroscopic research. Currently, two mechanisms have
been proposed based on the extensive study of CDO, the founding
member of this group of enzymes. The first proceeds via a non-ferryl-oxo-
dependent concurrent dioxygen transfer to the thiol group of the substrate,
while the second undergoes a more traditional oxygen activation
mechanism involving a high-valent ferryl-oxo species and stepwise O atom
transfers (Fig. 1C). The first mechanism was proposed based on a persul-
fenate intermediate (Driggers et al., 2013; Simmons et al., 2008). The
second mechanism was solely proposed based on computational studies
(Kumar, Thiel, & de Visser, 2011), while the attempts to trap the ferryl
intermediate were not successful (Tchesnokov et al., 2016). Since a high-
valent ferryl-oxo species is critical in the second mechanism, substituting
iron for other metals that barely present a high-valent state in the enzyme is
attractive for discerning between these two mechanisms.

Swapping Fe(II) for other divalent metals has been an important
strategy to investigate the catalytic mechanisms of dioxygenases. In an
iron-dependent dioxygenase, homoprotocatechuate 2,3-dioxygenase
(HPCD), the cobalt-substituted enzyme maintains ring cleaving activity
(Fielding, Lipscomb, & Que, 2012), suggesting that the oxidation state
of cobalt during the catalysis also remains the same, like the natural iron
enzymes (Lipscomb, 2014; Traore & Liu, 2022). In another Cupin-type
enzyme, acireductone dioxygenase (ARD), Fe-ARD and Ni-ARD
both present catalytic activity with different ARD isomers (Dai,
Pochapsky, & Abeles, 2001). These studies imply that non-ferryl-
oxo-dependent dioxygenases can maintain reactivity after proper metal
swapping from Fe(II) to Co(II) or Ni(II).
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In this chapter, we describe a new HPLC-mass spectrometry (HPLC-
MS)-based ADO assay protocol in addition to the commonly used oxygen
electrode-based ADO assay and the methods to prepare and study cobalt(II)-
substituted ADO, Co(II)-ADO. The experimental methods include protein
expression, purification, crystallization, spectral characterization, cobalt
reconstitution, and a new high-performance liquid chromatography-mass
spectrometry (HPLC-MS) analysis of the reaction product. Cell culture for
Co(II)-ADO was conducted in minimal media supplemented with CoCl2
during expression. As-purified Co(II)-ADO was characterized by optical and
electron paramagnetic resonance (EPR) spectroscopy to confirm the presence
of cobalt. We developed a method to prepare a close to metal-free “apo-
ADO” form of the protein that uses chelating reagent treatment to eliminate
the interference of trace amounts of metals. The cobalt-reconstituted ADO
was prepared by incubating “apo-ADO” with CoCl2. A ferrozine assay
determined iron content in cobalt-reconstituted ADO, and the reactivity was
precisely evaluated by an HPLC-MS method using isocratic elution. This
cobalt-substitution method helps us gain insights into the natural iron-
dependent thiol dioxygenases (Li, Duan, & Liu, 2024). A Cobalt(IV)-oxo
species has not been observed in biology. All synthetic Co(IV)-oxo com-
plexes require the support of a macrocyclic ligand set (Wang et al., 2017).
Thus, if a cobalt-substituted non-heme enzyme is catalytically active, it would
favor the pathway not involving a high-valent metal-oxo. The same strategy
can be applied to the structural and mechanistic study of many other non-
heme iron-dependent enzymes.

2. Protein expression, purification, and crystallization

This section describes the expression and purification of human ADO
(hADO) with an iron or cobalt metal center. The wild-type (WT) hADO
and hADO C18S/C239S were cloned to pET-28a-TEV expression vector
plasmid with a cleavable His6-tag containing 30 additional amino acids at the
N-terminus in our previous work (Wang, Li, & Liu, 2021). Escherichia coli
BL21 (DE3) competent cells were transformed with the plasmid. Cell culture
was conducted in M9 medium with the supplement of Fe(II) or Co(II) to
minimize the contamination of other metal ions. Fe-ADO was purified using
an immobilized metal affinity chromatography (IMAC) column charged with
nickel, while Co-ADO was purified using a cobalt IMAC column to prevent
contamination with nickel ions. The N-terminal His-tagged ADO was mixed
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with tobacco etch virus (TEV) protease and dialyzed against the dialysis
buffer containing 10mM tris(hydroxymethyl)aminomethane-HCl (Tris-
HCl) (pH 8.0). The His6-tag-cleaved and un-cleaved proteins were sepa-
rated using the IMAC column. The non-tagged hADO proteins were fur-
ther purified by gel filtration chromatography using Superdex 75. The purity
of the proteins was evaluated using sodium dodecyl sulfate–polyacrylamide
gel electrophoresis (SDS-PAGE). The hADO C18S/C239S mutant can be
expressed, purified, and crystallized using the same method. ADO forms
inter- and intra-disulfide bonds among subunits with two surface located
cysteines, Cys18 and Cys239, causing heterogeneity (Wang et al., 2021).
These two cysteine residues are not conserved in other thiol dioxygenases,
and their mutation to serine does not affect the enzymatic activity of ADO.
Compared to wild-type (WT) hADO, the C18S/C239S variant is more
homogeneous and predominant in a monomeric form (Fig. 2A). After gel
filtration chromatography, the purity of ADO proteins is suitable for future
experiments (Fig. 2B).

2.1 Equipment
• Shaking incubator (Excella E25, New Brunswick Scientific).

• Cell disruptor (LM20 Microfluidizer Processor, Microfluidics International
Corporation).

• Centrifuge (Avanti JXN-26, Beckman Coulter).

Fig. 2 Comparison of wild-type Co-ADO and C18S/C239S variant by gel filtration
chromatography (A) and SDS-PAGE (B). (1) C18S/C239S Fe-ADO; (2) WT Fe-ADO; (3)
C18S/C239S Co-ADO; (4) WT Co-ADO; and (5) “Apo-ADO”.
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• Fast protein liquid chromatography (FPLC) (ӒKTA pure chromato-
graphy system, Cytiva).

• Ni-IMAC column (HisTrap HP, Cytiva).

• Gel filtration chromatography column (HiLoad 16/600 Superdex 75
prep grade, Cytiva).

2.2 Reagents
• Luria Broth (LB) Broth (Miller) medium: 10.0 g/L tryptone, 10.0 g/L
NaCl, and 5.0 g/L yeast extract, sterilized by autoclave.

• M9 salt solution: 12.8 g/L Na2HPO4, 3.0 g/L KH2PO4, 0.5 g/L NaCl,
and 1.0 g/L NH4Cl, dissolved in double-distilled water (ddH2O), ster-
ilized by autoclave.

• 1M MgSO4 stock solution, sterilized by 0.22 µm filtration and stored at
4 °C.

• 1M CaCl2 stock solution, sterilized by 0.22 µm filtration and stored at
4 °C.

• M9 supplement buffer (50×): 200 g/L glucose, 20 g/L casamino acid, and
100 mg/L thiamine, sterilized by 0.22 µm filtration and stored at 4 °C

• Kanamycin stock solution: 50 mg/mL kanamycin dissolved in ddH2O,
sterilized by 0.22 µm filtration and stored at −20 °C.

• CoCl2 stock solution: 0.1M CoCl2, dissolved in ddH2O.

• Fe(NH4)2(SO4)2 stock solution: 0.1M Fe(NH4)2(SO4)2 dissolved in
ddH2O, freshly prepared.

• Isopropyl β-d-1-thiogalactopyranoside (IPTG) stock solution: 1M IPTG
dissolved in ddH2O, sterilized by 0.22 µm filtration and stored at −20 °C.

• Phenylmethylsulfonyl fluoride (PMSF).

• Lysing buffer: 50 mM Tris-HCl, 200 mM NaCl, pH 8.0, stored at 4 °C.

• Elution buffer: 50 mM Tris-HCl, 200 mM NaCl, 500 mM imidazole,
pH 8.0, stored at 4 °C.

• Storage buffer: 50 mM Tris-HCl, 50 mM NaCl, pH 7.6, stored at 4 °C.

• Dialysis buffer: 10 mM Tris-HCl, pH 8.0, stored at 4 °C.

• TEV protease stock solution (2 mg/mL).

• Crystallization buffer: 100 mM Bis-Tris (pH 5.5), 200 mM (NH4)2SO4,
and 20% (w/v) PEG3350.

2.3 Procedure
1. Inoculate a single colony of competent cells to 5 mL LB medium

with 50 mg/L kanamycin. Incubate this preculture at 37 °C, 220 rpm
for 8 h.
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2. Prepare M9 medium by mixing 200 mL of M9 salt solution, 4 mL of
M9 supplement buffer, 0.2 mL of 1M MgSO4 solution, 0.02 mL of
1M CaCl2 solution, and 0.2 mL of kanamycin stock solution in a 1 L
flask. Transfer 1 mL of preculture to the M9 medium and incubate at
37 °C, 220 rpm for 12 h.

3. Prepare M9 medium by mixing 1 L of M9 salt solution, 20 mL of M9
supplement buffer, 1 mL of 1M MgSO4 solution, 0.1 mL of 1M
CaCl2 solution, and 1 mL of kanamycin stock solution in a 2 L baffled
flask. Transfer 20 mL of preculture to the M9 medium and incubate at
37 °C, 220 rpm.

4. When the optical density at 600 nm (OD600) reaches 0.4, add 0.2 mL
of Fe(NH4)2(SO4)2 or CoCl2 stock solution (20 μM final concentra-
tion) solution to the1 L culture.

5. When the OD600 reaches 0.8, add 0.5 mL of 1M IPTG solution
(0.5 mM final concentration) to induce gene expression. Incubate at
37 °C, 220 rpm for another 4 h.

6. Harvest cells by centrifugation for 10 min at 8000g, 4 °C. Freeze cell
pellet at −80 °C for future use.

7. Resuspend the cell pellet in the lysing buffer with 2 mg PMSF sup-
plement. Disrupt cells at 30,000 psi in the ice bath. Centrifuge for 1 h
at 34,000g, 4 °C, to remove cell debris.

8. Assign lysing buffer as buffer A, and elution buffer as buffer B. Load the
supernatant to the Ni or Co-IMAC column at 1 mL/min speed in the
FPLC.

9. When loading is done, wash the column with two column volumes
(CVs) of 100% buffer A. Then, wash the column with two CVs of 1%
buffer B. Elute with 100% buffer B and collect ADO protein.

10. Concentrate down ADO protein and dilute in the lysing buffer to
remove excess imidazole. Mix ADO protein and TEV protease in a
10:1 w/w ratio to cut the His6 tag. Dialyze in 2 L dialysis buffer for
12 h at 4 °C.

11. Remove precipitate by centrifugation at 30,000g for 10 min. Load cut
protein onto Ni or Co-IMAC columns at 1 mL/min speed. Collect
the flow-through solution.

12. Concentrate down ADO protein to 2 mL aliquot. Equilibrate
Superdex 75 column with the storage buffer. Purify ADO protein
through Superdex 75 column using 1.5 mL/min speed at 4 °C. Collect
purified ADO protein and freeze at −80 °C for future use.

154 Ran Duan, Jiasong Li and Aimin Liu



13. Load 2 μg of protein in the well of a SDS-PAGE gel. Evaluate the
purity of ADO protein by SDS-PAGE.

14. For protein crystallization, hADO C18S/C239S protein was con-
centrated to approximately 30 mg/mL and mixed at 1:1 (v/v) with a
crystallization buffer using the hanging drop, vapor-diffusion method
at 289 K.

2.4 Note
1. The cell membrane can be disrupted by sonication without influencing

quality or yield.
2. The Co-IMAC column can be prepared by treating a regular Ni-IMAC

column with the following solutions in sequence: 2 CV of ddH2O, 4
CV of 0.1M ethylenediaminetetraacetic acid (EDTA) solution, 2 CV of
ddH2O, 4 CV of 0.1M CoCl2 solution, and 2 CV of ddH2O.

3. ADO purified through a Co-IMAC or Ni-IMAC column may contain
cobalt and nickel ions because the iron binding is less tight than that of
heme enzymes. However, this metal substitution has a negligible
influence on preparing metal-substituted ADO proteins with the pro-
cedure of stripping metal ions prior to metal reconstitution.

3. Spectral characterization of Co-ADO

The Co-ADO from the M9 medium exhibits distinct spectroscopic
properties. Co-ADO shows a light yellow color, whereas the “apo-ADO”
is colorless. The Co(II) is EPR active with its d7 electron configuration. In
contrast, the Fe(II) in WT ADO is EPR silent with its d6 electron con-
figuration. In this section, we conducted a spectroscopic characterization of
the Co(II)-ADO. The optical spectrum of Co(II)-ADO exhibits two
strong shoulders at approximately 310 and 420 nm, and a much weaker
shoulder in the 450–700 nm region. The spectrum is consistent with
spectral features of Co(II)-ACMSD (Li, Walker, Iwaki, Hasegawa, & Liu,
2005), which is assigned as a pentacoordinate Co(II) center ligated via three
His, one Asp, and one water. The optical spectral features are much more
pronounced when shown as difference spectra over “apo-ADO” (Fig. 3A).
The two stronger shoulders are due to the ligand-to-metal charge transfer
(LMCT), which gives Co-ADO a light yellow color. The weaker shoulder
in the 450−700 nm region is caused by the d-d transitions of the Co(II)
ion. The relationship between the coordination number and the extinction
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coefficients of the d-d transitions in the visible region (450−750 nm) of
high-spin Co(II) model complexes have been extensively discussed (Bertini
& Luchinat, 1984; Horrocks, Ishley, Holmquist, & Thompson, 1980;
Sellin, Eriksson, Aronsson, & Mannervik, 1983). General guidelines of this
literature indicate that extinction coefficients for peaks between 400 and
900 nm are usually below 50 for six-coordination geometry, between
50 and 300 for five-coordination geometry, and greater than 300 for four-
coordination geometry. The molar extinction coefficient at 550 nm is
approximately 100M−1cm−1, indicating a five-coordinated or highly dis-
torted six-coordinate high-spin Co(II) center. These results revealed a
distortion of the cobalt ligand environment away from an idealized six-
coordinate geometry. As depicted in Fig. 3B, an as-isolated Co(II)-ADO
exhibited a high-spin (HS) center, characteristic of a typical ground spin
state of S = 3/2 Co(II) species with effective g values (gx, gy, gz) of 2.63,
4.25, and 5.26. HS EPR spectra have been noted in Co(II)-ACMSD
(Li et al., 2005) and Co(II)-QueD (Merkens, Kappl, Jakob, Schmid, &
Fetzner, 2008), the effective g values of which differ from Co-ADO owing
to the variation in ligated residues and coordination geometry.

3.1 Equipment
• X-band EPR spectrometer (E560 EPR/ENDOR spectrometer with a
cryogen-free 4 K temperature system, Bruker Corporation).

• UV–vis spectrometer (Evolution Pro UV–vis Spectrophotometer,
Thermo Fisher Scientific).

Fig. 3 The optical and EPR spectra of Co-ADO. (A) The optical spectra of 300 μM apo-
ADO (black), Co-ADO (red), and their difference spectrum (blue). (B) The EPR spectrum
of 100 μM Co-ADO. The EPR data was collected at 30 K with a microwave power of
3.17 mW.
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3.2 Reagents
• Storage buffer: 50 mM Tris-HCl, 50 mM NaCl, pH 7.6, stored at 4 °C.

• Co-ADO: As purified Co-ADO from M9 medium, dissolved in the
storage buffer in aerobic conditions.

• Metal-strapped ADO: “apo-ADO” from Section 4.3, dissolved in the
storage buffer in aerobic conditions after three rounds of buffer changing.

3.3 Optical spectral characterization
1. Turn on the UV–vis spectrometer and wait 30 min until the lamps are

warmed up.
2. Set scan range from 250 to 800 nm. Scan the storage buffer as blank for

all samples.
3. Scan the UV–vis spectrum of 300 μM Co-ADO or “apo ADO”.
4. Determine the molar extinction coefficient.

3.4 EPR spectral characterization
1. Add 200 μL of 100 μM Co-ADO to an EPR quartz tube. Slowly freeze

down the sample in liquid nitrogen. Store in a liquid nitrogen tank.
Prepare a sample with storage buffer using the same method as the
blank.

2. Set the EPR spectrometer at 100 kHz modulation frequency, 0.6 mT
modulation amplitude, and wait for the temperature to decrease to
4.5 K.

3. Scan the blank sample’s EPR spectrum using 3.17 mW microwave
power at 30 K. Each spectrum averages four scans.

4. Scan the EPR spectrum of Co-ADO using 3.17 mW microwave power
at 30 K. Each spectrum averages four scans.

4. Cobalt reconstitution in ADO

Even though Co-ADO is cultured in the M9 medium with minor
metal ions, trace amounts of iron can still be detected in the Co-ADO from
the EPR spectrum. To evaluate the role of cobalt in the ADO reactivity
and spectroscopic properties, the proper method is to prepare near metal-
free “apo-ADO” and compare the results before and after cobalt incor-
poration. However, removing metal ions from a non-heme iron-depen-
dent protein is challenging. The three ligated histidine residues make the
metal ion resistant to removal by regular EDTA treatment. Here we
describe a method to carry out cobalt reconstitution on WT ADO using
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1,10-phenanthroline as a chelating reagent (Ren, Lee, Wang, & Liu, 2022).
The iron content in “apo-ADO” and Co-ADO was characterized using
the ferrozine assay (Tchesnokov, Wilbanks, & Jameson, 2012). The
reconstitution process was carried out in 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid (HEPES) buffer to reduce the interaction between
buffer (i.e., Tris-HCl buffer) and metal ions.

4.1 Equipment
• Centrifuge (Avanti JXN-26, Beckman Coulter).

• FPLC (ӒKTA pure™ chromatography system, Cytiva).

• Desalting column (HiTrap Desalting, Cytiva).

• Hotplate and stirrer (IKA® C-MAG HS hotplate stirrers, IKA Inc.).

• UV–vis spectrometer (Evolution™ Pro UV–vis spectrophotometers,
Thermo Scientific).

• Schlenk line.

• Vacuum pump.

4.2 Reagents
• HEPES buffer: 50 mM HEPES buffer, pH 8, stored at 4 °C.

• 1,10-phenanthroline stock solution: 0.1M 1,10-phenanthroline in 0.1M
HCl.

• EDTA stock solution: 0.1M EDTA solution, pH 8.

• Na2S2O4 stock solution: 1M Na2S2O4, dissolved in ddH2O, freshly
prepared.

• CoCl2 stock solution: 0.1M CoCl2, dissolved in ddH2O.

• Ferrozine assay mixture: 5.56 mM ferrozine, 2.9% ascorbic acid, 430 mM
ammonium acetate, pH 9.

• 80% H2SO4.

• Iron standard: 10 μL Fe(NH4)2(SO4)2 in HEPES buffer; 5 μL 80% H2SO4.

4.3 Preparation of “apo-ADO” through 1,10-phenanthroline
assay

1. Degas 1.8 mL of 300 μM WT ADO protein with a Schlenk line for
30 min in the ice bath.

2. Add 4 μL of 1M Na2S2O4, 100 μL of EDTA stock solution, and 100 μL
of 1,10-phenanthroline stock solution to the ADO protein. The final
concentrations of reagents are 2 mM Na2S2O4, 5 mM EDTA, and
5 mM 1,10-phenanthroline. Leave the ADO protein solution at 4 °C for
1 h until it reacts thoroughly. The solution should turn to an orange-red
color.
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3. Fill the desalting column with HEPES buffer. Load ADO protein to the
desalting column at 5 mL/min speed and collect the first peak.
Concentrate down protein solution into a 1.8 mL aliquot.

4. Repeat Steps 2 and 3 two more times.

4.4 Evaluation of the “apo-ADO” using ferrozine assay
1. Prepare the “apo-ADO” stock solution by concentrating the “apo-

ADO” protein from Section 4.3 to millimolar concentration. Calculate
the final concentration of the “apo-ADO” sample (1/15 of the apo-
ADO stock solution).

2. Mix 10 μL of “apo-ADO” stock solution with 5 μL 80% H2SO4 in a
centrifuge tube. Heat to 95 °C for 30 min using the hot plate.

3. After cooling down, add 135 μL of ferrozine assay mixture to the sample and
mix well. Remove precipitate by centrifugation at 20,000g for 5min

4. Add 10 μL of HEPES buffer and 5 μL of 80% H2SO4 to 135 μL of ferrozine
assay mixture to make a blank sample. Measure the UV–vis absorbance at
562 and 750 nm. Use the absorbance at 750 nm as the baseline for all samples.

5. Add 15 μL of iron standard with different Fe(NH4)2(SO4)2 concentra-
tions to 135 μL of ferrozine assay mixture. Measure the UV–vis absor-
bance at 562 nm (A562). Repeat three times for each concentration of
standard. Generate a standard curve of A562 vs. iron concentration.

6. Measure the UV–vis absorbance of the “apo-ADO” mixture at 562 nm.
Fit the absorbance to the standard curve and determine the iron con-
centration in the “apo-ADO” mixture. Calculate the iron concentration
and percentage in protein following the example in Fig. 4.

4.5 Reconstitution of ADO enzyme by adding divalent metal
ions

1. Dilute “apo-ADO” to 50 μM in the desalting buffer.
2. Metal reconstitution method (using cobalt ion as an example): Add

0.1M CoCl2 stock solution to “apo-ADO” in drops while stirring at
4 °C, until the concentration of CoCl2 reaches 50 μM.

3. Incubate the mixture at 4 °C for 30 min. Centrifuge at 20,000g for
2 min to remove precipitate. Use immediately for the HPLC-MS assay.

4.6 Note
• “Apo-ADO” protein is not stable. It is recommended to use it as soon as
possible.

• The 1,10-phenanthroline stock solution should be made freshly within a
month.
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• To reduce the contamination of metal ions in the ferrozine assay, it is
recommended that all glassware be acid-washed. The desalting buffer can
be further purified using a Chelex 100 column.

• Each experiment should be performed in triplicate.

• The metal reconstitution method can be applied to other metal ions like
Ni(II) or Fe(II). The Fe(II) reconstitution should be carried out in
anerobic conditions.

5. HPLC-MS analysis of the hypotaurine formation by
ADO

To determine the reactivity of “apo-ADO” and study the influence
of cobalt on ADO, a precise method is required to identify the reaction
product, hypotaurine, from its analogs in the activity assay. Even though
the oxygen consumption of ADO reaction can be recorded using an
oxygen electrode (Wang et al., 2018), the self-oxidization of cysteamine
into the dimer form, cystamine, cannot be excluded from this method. A
previously reported HPLC method can separate and detect hypotaurine
efficiently (Coloso, Hirschberger, Dominy, Lee, & Stipanuk, 2006;
Dominy et al., 2007). However, this coupled assay requires pre-treatment

Fig. 4 Iron concentration determination of apo-ADO and Co-ADO produced from M9
media. The black trace shows the standard curve fitted by various concentrations of
Fe(NH4)2(SO4)2. The iron concentration of 1.62 μM in 125 μM apo-ADO indicates that
the iron occupancy is 1.30% (blue); The iron concentration of 1.97 μM in 114 μM
Co-ADO indicates a 1.73% iron occupancy (red).
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with o-phthaldialdehyde and relies on an expensive fluorescence detector
for detection. Inspired by the HPLC method used in the CDO activity
assays (Li et al., 2018; McCoy et al., 2006), we developed a method using
isocratic elution to separate hypotaurine from cysteamine directly. The
hypotaurine product was verified using the retention time (Fig. 5A) and
mass spectrum (Fig. 5B) of a commercially purchased standard. The
reactivity of “apo-ADO” and Co-ADO can be determined through peak
area integration.

5.1 Equipment
• HPLC system (UltiMate 3000 with diode array detector, Thermo Fisher
Scientific).

• Analytical C18 column (Inertsil ODS-3 HPLC Column, 3 µm,
100 × 4.6 mm, GL Sciences Inc.).

• Ultra-centrifugal filter (Amicon Ultra Centrifugal Filter, 10 kDa
MWCO, 0.5 mL, MilliporeSigma).

• Thermomixer (Thermomixer R, Eppendorf).

Fig. 5 (A) Demonstration of Ni(II)-ADO’s dioxygenase catalytic activity and HPLC
profile for ADO activity assay. (1) 50 µM reconstituted Ni(II)-ADO + 10mM cysteamine;
(2) 50 µM “apo-ADO” + 10mM cysteamine; (3) HPLC hypotaurine sample; (4) HPLC
cysteamine sample; and (5) HPLC blank sample. The details of the reaction setup are
described in the text. The negative peak in the HPLC elution profiles emerged due to
the difference between the reaction HEPES buffer in the samples and the HPLC sol-
vent. (B) Reaction equation of ADO with cysteamine as a substrate and MS spectrum
of the hypotaurine peak in Sample (3 of panel A).
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5.2 Reagents
• HPLC running buffer: 0.6% methanol, 0.3% Heptafluorobutyric acid
(HFBA), and 99.1% dd H2O.

• 6M hydrochloride acid (HCl)

• HEPES buffer: 50 mM HEPES buffer, pH 8.

• Cysteamine stock solution: 1M cysteamine (Purchased from Acros
Organics), freshly prepared with degassed water (ddH2O bubbled with
N2 gas).

• Hypotaurine stock solution: 50 mM hypotaurine dissolved in ddH2O,
freshly prepared.

• Hypotaurine standards: 200 μL of hypotaurine solutions at various con-
centrations, freshly prepared with ddH2O and hypotaurine stock solu-
tion, filtered with 0.22 µm filter.

• HPLC blank sample: 198 μL of HEPES buffer; 2 μL 6M HCl.

• HPLC cysteamine sample (10 mM): 196 μL HEPES buffer; 2 μL 6M
HCl; and 2 μL of 2-AET (1M).

• HPLC hypotaurine sample (0.25 mM): 197 μL HEPES buffer; 2 μL 6M
HCl; and 1 μL 50 mM hypotaurine.

• “Apo-ADO” stock solution: 100 μM “apo-ADO”, dissolved in HEPES
buffer.

• Co-ADO stock solution: 100 μM Co-ADO generated from cobalt
reconstitution (Section 4.5), dissolved in HEPES buffer.

5.3 Procedure
1. Wash the C18 column using the HPLC running buffer until the

baseline turns flat.
2. Set up HPLC assay condition. Buffer: HPLC running buffer; Flow

rate: 1.5 mL/min; Run time: 10 min; Wavelength: 219 nm; Injection
volume: 50 μL.

3. Inject 50 μL of a hypotaurine standard and run HPLC assay. Repeat
three times for each concentration of standard. Fit the peak area to the
concentration as a standard curve.

4. Mix 100 μL of “apo-ADO” stock solution, and 96 μL of HEPES buffer in a
microcentrifuge tube (tube A). Preheat to 37 °C on the thermomixer.

5. Add 2 μL of 1M cysteamine to a 1.5 mL microcentrifuge tube (tube
B), preheat to 37 °C on the thermomixer.

6. Add 2 μL of 6M HCl to a 1.5 mL EP tube (tube C).
7. Transfer 196 μL of “apo-ADO” from tubes A to B to start the reaction.

Set the thermomixer at 37 °C, 500 rpm. React for 2 min.
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8. Transfer 198 μL of mixture from tubes B to C to quench the reaction.
9. Filter the reaction mixture with ultra-centrifugal filters at 10,000g for

10 min. Collect the flow-through as the “apo-ADO” sample. Final
concentration: 50 µM “apo-ADO”, 10 mM cysteamine.

10. Repeat steps 3−8 using Co-ADO stock solution. Collect the flow-
through as the Co-ADO sample. Final concentration: 50 µM recon-
stituted Co-ADO, 10 mM cysteamine.

11. Inject 50 μL of HPLC blank sample and run HPLC assay.
12. Inject 50 μL of HPLC hypotaurine sample and run the HPLC assay.

Determine the retention time of hypotaurine.
13. Inject 50 μL of HPLC cysteamine sample and run the HPLC assay.

Calculate the peak area for hypotaurine. Set this peak area as the
baseline for all samples.

14. Inject 50 μL of “apo-ADO” sample and run HPLC assay. Calculate the
peak area for hypotaurine.

15. Inject 50 μL of Co-ADO sample and run HPLC assay. Calculate the
peak area for hypotaurine.

16. Calculate the kobs from the standard curve. Using the peak area
values calculated from Steps 14 to 15, subtract the baseline from
Step 13. Then fit the resultant values to the standard curve from
Step 3 and convert them to the hypotaurine concentrations. The
kobs can be calculated from the formula below, where enzyme
concentration is 50 µM and the reaction time is 2 min.

= ×kobs
Hypoaturine concentartion

Enzyme concentration Reaction time

5.4 Note
1. Make sure there are no leaks in the ultra-centrifugal filters. The un-

filtered protein may clog the C18 column.
2. Cysteamine is hygroscopic and very easy to oxidize. It is recommended that

cysteamine stock solution be stored in an O2-free anaerobic chamber.
3. The 6M hydrochloride acid is corrosive. Personal protective equipment

(PPE) is required when handling it.
4. Each experiment should be performed in triplicate.
5. Regarding the iron-reconstituted ADO, the concentration of the ADO

enzyme and Fe(II) needs to be reduced to 5 µM. Otherwise, most of the
dissolved oxygen in the reaction mixture will be consumed, and the
reactivity will be underestimated.
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6. Summary and conclusions

This chapter presents a novel approach for investigating the catalytic
mechanism of cysteamine dioxygenase (ADO) using metal substitution. We
successfully generated cobalt(II)- and Ni-(II)-substituted ADO (Co-ADO
and Ni-ADO) and characterized their properties. Optical and EPR spec-
troscopy confirmed cobalt incorporation into the enzyme, and the ferrozine
assay verified the removal of the metal in apo-ADO after treatment.
Importantly, the HPLC-MS method for activity assay demonstrates Co-ADO
and Ni-ADO are catalytically competent and the dioxygenase activity of
which is proportional to the amount of Co(II) or Ni(II) present. These
combined results strongly support a non-ferryl-oxo-dependent, concurrent
dioxygen transfer mechanism during ADO-mediated oxygenation. This
work sheds light on thiolate-bound metalloenzyme oxygenation reactions
and establishes a powerful method for studying other three-histidine non-
heme iron enzymes oxidizing thiol-bearing substrates.
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