Skip to Search Skip to Navigation Skip to Content



Paper in Press:.  Crosslinking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway

  Dornevil K, Davis I, Fielding AJ, Terrell JR, Ma L, and Liu A*

  J. Biol. Chem., 2017, 292(33), 13645-13657 (doi:10.1074/jbc.M117.794099)
 


86.    Hypertryptophanemia due to tryptophan 2,3-dioxygenase deficiency

  Ferreira F,* Shin I, Sosova I, Dornevil K, Jain Shailly, Dewey D, Liu F, and Liu A*

  Molecular Genetics and Metabolism, 2017, 120(4), 317-324 (doi:10.1016/j.ymgme.2017.02.009)


 


85.    Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics

 Wang Y, Li J, and Liu A*

  J. Biol. Inorg. Chem., 2017, 22(2), 395-405 (doi: 10.1007/s00775-017-1436-5)

 (invited article for a special issue of the journal under the theme of 60 Years of Oxygen Activation)


 


84.    Heterolytic O-O bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG

 Geng J, Huo L, and Liu A*

  J. Inorg. Biochem., 2017, 167, 60-67 (doi: 10.1016/j.jinorgbio.2016.11.013)
 


83.    A pitcher-and-catcher mechanism drives endogenous substrate isomerization by a dehydrogenase in kynurenine metabolism

 Yang Y, Davis I, Ha U, Wang Y, Shin I, and Liu A*

  J. Biol. Chem., 2016, 291(51), 26252-26261 (doi:10.1074/jbc.M116.759712)

 (designated by the editors as a "Papers of the Week and selected, after publication in the JBC, in a collection of a representative snapshot of recent papers in the research field of Enzymology in a virtual issue)


 )


82.    Control of carotenoid biosynthesis through a heme-based cis-trans isomerase

 Beltrán J, Kloss B, Hosler JP, Geng J, Liu A, Modi A, Dawson JH, Sono M, Shumskaya M, Ampomah-Dwamena C, Love JD, and Wurtzel ET*

  Nature Chemical Biology, 2015, 11, 598-605 (doi:10.1038/nchembio.1840)
 


81.    What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? (Invited Editorial)

 Davis I and Liu A*

  Expert Review of Neurotherapeutics, 2015,15(7), 719-721. (doi: 10.1586/14737175.2015.1049999)


80.    An iron reservoir to the catalytic metal: The rubredoxin iron in an extradiol dioxygenase.

 Liu F, Geng J, Gumpper RH, Barman A, Davis I, Ozarowski A, Hamelberg D, and Liu A*

  J. Biol. Chem., 2015, 290(25), 15621-15634.
 


79.    Probing bis-Fe(IV) MauG: Experimental evidence for the long-range charge-resonance model.

 Geng J, Davis I, and Liu A*

  Angew. Chem. Int. Ed., 2015, 54, 3692-3696 (This paper helps establishing a novel, biological, long-range, charge resonance (CR) stabilization phenomenon that we have previously proposed in a PNAS paper--see manuscript #71).      
     


78.    Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

 Huo L,^ Davis I,^ Liu F, Andi B, Esaki S, Hiroaki I, Li T, Hasegawa Y, Orville AM, and Liu A*

  Nature Communications, 2015, 6:5935 (This article describes our findings of an innate isomerization and sp3-to-sp2 transition during a dehydrogenation).      
(^: shared first authorship)
     


77.    Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): A structural and mechanistic unveiling

 Huo L,^ Liu F,^ Hiroaki I, Li T, Hasegawa Y, and Liu A*

  PROTEINS, 2015, 83(1), 178-187
(^: shared first authorship; this article is featured as a cover story by the journal)
     


76.    Bis-Fe(IV): Nature's sniper for long-range oxidation

 Geng J, Davis I, Liu F, and Liu A*

  J. Biol. Inorg. Chem., 2014, 19(7), 1057-1067 (Invited Review Article)      


75.    Amidohydrolase Superfamily

 Liu A* and Huo L

  Encyclopedia of Life Sciences, 2014, 1-11 (Invited Review Article)      


74.    Heme-dependent dioxygenases in tryptophan oxidation

 Geng J and Liu A*

  Arch. Biochem. Biophys., 2014, 544, 18-26 (Invited Review Article)      


73.    The Power of two: arginine 51 and arginine 239* from a neighbouring subunit are essential for catalysis in α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase

 Huo L, Davis I, Chen L, and Liu A*

  J. Biol. Chem., 2013, 288(43), 30862-30871
     


72.    Pirin is an iron-dependent redox regulator of NF-κB

 Liu F, Rehmani I, Esaki S, Fu R, Chen L, Serroano V, and Liu A*

  Proc. Natl. Acad. Sci. U.S.A., 2013, 110(24), 9722-9727 (PNAS Direct Submission).      

             (** Faculty of 1000 recommended article )

71.    Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG

 Geng J, Dornevil K, Davidson VL, and Liu A*

  Proc. Natl. Acad. Sci. U.S.A., 2013, 110(24), 9639-9644 (PNAS Direct Submission).      


70.    Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis

 Yukl ET, Liu F, Krzystek J, Shin S, Jensen LMR, Davidson VL, Wilmot CM,* and Liu A*

  Proc. Natl. Acad. Sci. U.S.A., 2013, 110(12), 4569-4573 (PNAS Direct Submission).   

             * Faculty of 1000 Recommended Article


69.    Development of a capillary zone electrophoresis-electrospray ionization-mass spectrometry assay with a sulfonated capillary for profiling picolinic acid and quinolinic acid formation in multienzyme system

 Wang X, Davis I, Liu A,* and Shamsi SA*

  Electrophoresis, 2013, 34(12), 1828-1835.          


68.    An unexpected copper catalyzed 'reduction' of an arylazide to amine through the formation of a nitrene intermediate

 Peng H, Dornevil K, Draganov A, Chen W, Dai C, Nelson WH, Liu A,* and Wang B*

  Tetrahedron, 2013, 69, 5079-5085 (dedicated to the memory of Professor William H. Nelson)         


67.    Improved separation and detection of picolinic acid and quinolinic acid by capillary electrophoresis-mass spectrometry: Application to the analysis of human cerebrospinal fluid

 Wang X, Davis I, Liu A, Miller A, and Shamsi SA*

  J. Chromatogr. A., 2013, 1316, 147-153      


66.    Chemical rescue of the distal histidine mutants of tryptophan 2,3-dioxygenase

 Geng J, Dornevil K, and Liu A*

  J. Am. Chem. Soc., 2012, 134, 12209-12218 


65.    Evidence for a dual role of an active site histidine in α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase

 Huo L, Fielding AJ, Chen Y, Li T, Iwaki H, Hosler JP, Chen L, Hasegawa Y, Que Jr, L, and Liu A*

  Biochemistry, 2012, 51, 5811-5821    


64.    Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity

 Tarboush NA, Shin S, Geng J, Liu A, and Davidson VL*

  FEBS Lett., 2012, 586, 4339-4343  


63.    Decarboxylation mechanisms in biological system (Invited Review Article)

 Tingfeng Li, Lu Huo, Christopher Pulley, and Liu A*

  Bioorg. Chem., 2012, 43, 2-14      


62.    The role of calcium in metalloenzyme: Effects of calcium removal on the axial ligation geometry and magnatic properties of the catalytic diheme center in MauG    

 Chen Y, Naik SG, Krzystek J, Shin S, Nelson WH, Xue S, Yang JJ, Davidson VL, and Liu A*

  Biochemistry, 2012, 51, 1586-1597


61.    Tryptophan tryptophylquinone biosynthesis: A radical approach to posttranslational modification

 Davidson VL* and Liu A

  Biochim. Biophys. Acta, 2012, 1824, 1299-1305 (Invited Review Article)


60.    Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG

 Feng M, Jensen LMR, Yukl ET, Wei X, Liu A, Wilmot CM, and Davidson VL*

  Biochemistry, 2012, 51, 1598-1606


59.    The roles of Rhodobacter sphaeroides copper chaperones PCuAC and Sco (PrrC) in the assembly of the copper centers of the aa3-type and the cbb3-type cytochrome c oxidases

 Thompson AK, Gray J, Liu A, Hosler JP*

  Biochim. Biophys. Acta , 2012, 1817, 955-964


58.    Synthesis, characterisation, and preliminary in vitro studies of vanadium(IV) complexes with a schiff base and thiosemicarbazones as mixed ligands

 Lewis NA, Liu F, Seymour L, Magnusen A, Erves TR, Arca JF, Beckford FA, Venkatraman R, González-Sarrías A, Fronczek FR, VanDerveer DG, Seeram NP, Liu A, Jarrett WJ, Holder AH*

  Eur. J. Inorg. Chem., 2012, 4, 664-677


57.    Mutagenesis of tryptophan199 suggests that electron hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis

 Tarboush NA, Jensen LMR, Yukl ET, Geng J, Liu A, Wilmot CM, and Davidson VL

  Proc. Natl. Acad. Sci. U.S.A., 2011, 108(41), 16956-16961.  


56.    The reactivation mechanism of tryptophan 2,3-dioxygenase by hydrogen peroxide

 Fu R, Gupta R, Geng J, Dornevil K, Wang S, Hendrich MP, and Liu A*

 J. Biol. Chem., 2011, 268, 26541-26554

 

55.  Nature's strategy for oxidizing tryptophan: EPR and Mšssbauer characterization of the unusual high-valent heme iron intermediates. Book Chapter 15 in: Mossbauer Spectroscopy:  Applications in Chemistry, Biology, Industry, and Nanotechnology. 

      Dornevil K and Liu A,* edited by Virender K. Sharma, Goestar Klingelhoefer, and Tetsuaki Nishida, 2013, pp. 315-323

 

54.  Redox and oxygen sensing in the regulation of transcription by metalloproteins. Book Chapter 8 in: Molecular Basis of Oxidative Stress: Chemistry, Mechanisms, and Disease Pathogenesis.

       Rehmani I, Liu F and Liu A,* edited by Frederick A. Villamena, John Wiley & Sons, Inc., 2013, pp. 179-201

 

53.  The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis

Shin S, Feng M, Chen Y, Jensen LMR, Tachikawa H, Wilmot CM, Liu A, and Davidson VL*

Biochemistry, 2011, 50, 144-150.

 

52.  Proline 96 of the copper ligand loop of amicyanin regulates electron transfer from methylamine dehydrogenase by positioning other residues at the protein-protein interface

Choi M, Sukumar N, Mathews FS, Liu A, and Davidson VL*

Biochemistry, 2011, 50, 1265-1273.

 

51.  EPR and Mossbauer spectroscopy show inequivalent hemes in tryptophan dioxygenase

Gupta R, Fu R, Liu A, and Hendrich MP*
   

J. Am. Chem. Soc., 2010, 132, 1098-1109.

 

50.  Mutagenic analysis of Cox11 of Rhodobacter sphaeroides: Insights into the assembly of CuB of cytochrome c oxidase

Thompson, AK, Smith D, Gray J, Carr HS, Liu A, Winge DR, Hosler JP* 

Biochemistry, 2010, 49, 5651-5661.

 

49.  Heme iron nitrosyl complex of MauG reveals efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands

Fu R, Liu F, Davidson VL, and Liu A*

Biochemistry, 2009, 48, 11603-11605.
   

 

48.  Electron Paramagnetic Resonance (EPR) in Enzymology

       Liu A

       Wiley Encyclopedia of Chemical Biology, 2009, 1, 591-601, John Wiley & Sons, Inc.

 

47.  A single EF-hand isolated from STIM1 forms dimer in the absence and presence of Ca2+

Huang Y, Zhou Y, Wong HC, Chen Y, Wang S, Castiblanco A, Liu A, Yang JJ*

FEBS J. 2009, 276, 5589-5597.

 

46.  Defining the role of the axial ligand of the type 1 copper site in amicyanin by replacement of methionine with leucine

Choi M, Sukumar N, Liu A, and Davidson VL*

Biochemistry, 2009, 48, 9174-9184.

 

45.  A catalytic di-heme bis-Fe(IV) form of MauG, Alternative to an Fe(IV)=O porphyrin radical

       Li X, Fu R, Lee S, Krebs C, Davidson VL,* and Liu A*

       Proc. Natl. Acad. Sci. U.S.A. 2008, 105(25), 8597-8600 (PNAS Direct Submission).  
      

 

44.  Kinetic and physical evidence that the di-heme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone

Li X, Fu R, Liu A*, and Davidson VL*

Biochemistry, 2008, 47, 2908–2912.
   

 

 

43.  Purification and characterization of the epoxidase catalyzing the formation of fosfomycin from Pseudomonas syringae

Munos JW, Moon S-J, Mansoorabadi SO, Hong L, Yan F, Liu A, and Liu H-w*

      Biochemistry, 2008, 47, 8726–8735.

 

42.  Amidohydrolase Superfamily

Liu A*, Li T, and Fu R

Encyclopedia of Life Sciences (September 2007), John Wiley & Sons, Ltd: Chichester http://www.els.net/ [DOI: 10.1002/9780470015902.a0020546] (Invited Review).

 

41.  Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropyl phosphonic acid epoxidase using 17O-enriched substrates and substrate analogues

Yan F, Moon S-J, Liu P, Zhao Z, Lipscomb JD, Liu A, and Liu H-w*

Biochemistry, 2007, 46, 12628-12638.

 

40.  Detection of transient intermediates in the metal-dependent non-oxidative decarboxylation catalyzed by α-amino-β-carboxymuconic-ε-semialdehyde decarboxylase
      

Li T, Ma J, Hosler JP, Davidson VL, and Liu A*

J. Am. Chem. Soc., 2007, 129, 9278-9279.

 

39.  Crystallographic analysis of α-amino-β-carboxymuconic-ε-semialdehyde decarboxylase: Insight into the active site and catalytic mechanism of a novel decarboxylation reaction

Martynowski D., Eyobo Y., Li T, Yang K., Liu A,* and Zhang H*

Biochemistry 2006, 45, 10412-10421.

 

38.  Transition metal-catalyzed nonoxidative decarboxylation reactions

Liu A* and Zhang H

Biochemistry, 2006, 45, 10407-10411.

 

37.  α-Amino-b-carboxymuconic-ε-semialdehyde decarboxylase (ACMSD) is a new member of the amidohydrolase superfamily

Li T, Iwaki H, Fu R, Hasegawa Y, Zhang H, Liu A*
 

Biochemistry, 2006, 45, 6628-6634.

 

36.  The mechanism of inactivation of 3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3 hydroxyanthranilate

Colabroy KL, Zhai H, Li T, Ge Y, Zhang Y, Liu A, Ealick SE, McLafferty FW, and Begley TP*

Biochemistry, 2005, 44, 7623–7631.

 

35.  Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor
      

Li T, Walker AL, Iwaki H, Hasegawa Y, Liu A*

J. Am. Chem. Soc., 2005, 127, 12282–12290.

 

34.  Site-directed mutagenesis and spectroscopic studies of the iron-binding site of (S)-2 hydroxypropylphosphonic acid epoxidase

Yan F, Li T, Lipscomb JD, Liu A, and Liu HW*

Arch. Biochem. Biophys., 2005, 442, 82–91.

 

33.  An engineered CuA amicyanin capable of intramolecular electron transfer reactions

Jones LH, Liu A, and Davidson VL*

J. Biol. Chem., 2003, 278, 47269–47274.

 

32.  MauG, a novel di-heme protein required for tryptophan tryptophylquinone biogenesis

Wang Y., Graichen ME, Liu A, Pearson AR, Wilmot CM, and Davidson VL*

Biochemistry, 2003, 42, 7318–7325.

 

 

31.  Substrate radical intermediates in soluble methane monooxygenase

 Liu A, Jin Y, Zhanga J, Brazeaua BJ and Lipscomb JD.

 Biochem. Biophys. Res. Commun., 2005, 338, 254–261.

 

30.  O2- and α-ketoglutarate-dependent tyrosyl radical formation in TauD, an α-keto acid dependent non-heme iron dioxygenase

        Ryle MJ, Liu A, Muthukumaran RB, Koehntop KD, McCracken J, Que L Jr., and Hausinger RP. Biochemistry, 2003, 42, 1854–1862.

 

29.  Biochemical and spectroscopic studies on (S)-2-hydroxypropylphosphonic acid epoxidase: a novel mononuclear non-heme iron enzyme

        Liu P, Liu A, Yan F, Wolfe MD, Lipscomb JD, and Liu HW

        Biochemistry, 2003, 42, 11577–11586.

 

28.  Interconversion of two oxidized forms of taurine/α-ketoglutarate dioxygenase, a nonheme iron hydroxylase: Evidence for bicarbonate binding

        Ryle MJ, Koehntop KD, Liu A, Que L Jr, and Hausinger RP

Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 3790–3795.

 

27.  Reduction of Escherichia coli ribonucleotide reductase with ferrocene derivatives

        Liu A, Leese DN, Swarts JC, and Sykes AG

Inorg. Chim. Acta, 2002, 337, 83–90 (special edition, invited paper).

 

26.   Resonance Raman studies of the Fe(II)-a-keto acid chromophore

Ho RYN, Mehn MP, Hegg EL, Liu A, Ryle MJ, Hausinger RP, and Que L Jr

         J. Am. Chem. Soc., 2001, 123, 5022–5029.

 

25.   Alternative reactivity of an α-ketoglutarate-dependent Fe(II) oxygenase: enzyme self hydroxylation

Liu A, Ho RYN, Que L Jr, Ryle MJ, and Hausinger RP

         J. Am. Chem. Soc., 2001, 123, 5126–5127.

 

 

24.   Chemical reduction of the diferric-radical center in protein R2 from mouse ribonucleotide reductase is independent of the proposed radical transfer pathway

         Davydov A, …hrstršm M, Liu A, and GrŠslund A

         Inorg. Chim. Acta, 2002, 331, 65–72.

 

23.  EPR evidence for a novel interconversion of [3Fe-4S]+ and [4Fe-4S]+ clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro

        Liu A and GrŠslund A

        J. Biol. Chem., 2000, 275, 12367–12373.

 

22.  Yeast ribonucleotide reductase—a new type of ribonucleotide reductase with a heterodimeric iron-radical containing subunit

        Chabes A, Domkin V, Larsson G, Liu A, GrŠslund A, Wijmenga S, and Thelander L

        Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 2474–2479.

 

21.  Heterogeneity of the local electrostatic environment of the tyrosyl radical in Mycobacterium tuberculosis ribonucleotide reductase observed by high-field EPR spectroscopy

        Liu A, Barra AL, Rubin H, Lu G, and GrŠslund A

        J. Am. Chem. Soc., 2000, 122, 1974–1978.

 

20.  The anaerobic ribonucleotide reductase from Lactococcus lactis – catalytic properties and allosteric regulation of the pure enzyme system

       Torrents E, Buist G, Liu A, Eliasson R, Gibert I, GrŠslund A, and Reichard P

       J. Biol. Chem., 2000, 275, 2463–2471.

 

19.  EPR evidence of two structurally different ferric sites in Mycobacterium tuberculosis ribonucleotide reductase R2-2 protein

        Davydov A, Liu A, and Graslund A.

        J. Inorg. Biochem., 2000, 80, 213–218.

 

 

18.  Sequential mechanism of methane dehydrogenation over metal oxide and carbide catalysts

        Zhou T, Liu A, Mo Y, and Zhang H

        J. Phys. Chem. A, 2000, 104, 4505–4513.

 

17.  The interaction between iron and the protein radical in aerobic and anaerobic ribonucleotide reductases

        Liu A. Doctoral Thesis, Akademitryck AB 2000, Stockholm, Sweden, ISBN 91-7265-101-6, pp. 1-46.

 

16.  New paramagnetic species formed at the expense of the transient tyrosyl radical in mutant  protein R2 F208Y of Escherichia coli ribonucleotide reductase

        Liu A, Sahlin M, Pštsch S, Sjoberg BM, Graslund A

        Biochem. Biophys. Res. Commun., 1998, 246, 740–745.

 

15.  The tyrosyl free radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket

        Liu A, Pštsch S, Davydov A, Barra A, Rubin H, and GrŠslund A

        Biochemistry, 1998, 37, 16369–16377.

 

 

14.  Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers

      Zhou T, Mo Y, Liu A, and Tsai KR

      Inorg. Chem., 2004, 43, 923–930.

 

13.  Optimal group symmetric localized molecular orbitals

       Zhou T and Liu A.

      Theoret. Chim. Acta, 1994, 88, 375-381.

 

12.  Symmetry-adaptation of configuration basis in MCSCF method

     Zhou T and Liu A.

    Theoret. Chim. Acta, 1994, 89, 137-145.

 

11.  Study of localized molecular orbitals using group theory methods and its approach to the multi electron correlation problem: The symmetric reduction of multi-center integrals in multiconfigurational self-consistent-field approach

      Zhou T and Liu A

      J. Comp. Chem., 1994, 15, 858-865.

 

10.  Oxygenation of methane to methanol by methane monooxygenase of Methylomonas species GYJ-3

     Liu A and Li S

     J. Nat. Gas Chem.., 1993, 2, 109–118.

 

9.  Formation of propylene oxide by Methylomonas GYJ-3 in a gas-solid bioreactor

     Li S, Gao C, and Liu A

     Chinese Chem. Lett., 1991, 4, 303–306.

 

8.  Studies on rationalization of nitrogenase active center models*novel nitrogenase inhibitors and promoters as chemical probes

      Liu A, Zhang H, Yuan Y, Xu L, Wan H, and Tsai KR

     Fen Zi Cui Hua (Chinese Journal of Molecular Catalysis) , 1994, 8, 81–85.

7.  Effects of bidentate ligands dppe and dppm on spontaneous self-assembly of Mo-Fe-S cluster compounds

      Liu A, Yuan Y, Zhou M, Yong R, Zhang H, Wan H, and Tsai KR

     Journal of Xiamen University (Natural Science) , 1994, 33(6), 809–813.

6.  Structural information of nitrogenase active-center clusters deduced from the EHMO study

      Liu A, Zhou T, Wan H, and Tsai KR

     Chemical Journal of Chinese Universities, 1993, 14, 996–999.

5.  The effects of gamma-ray irradiation of PET electret

      Liu A, Wu H, and Zhou Y

     Journal of Xiamen University (Natural Science) , 1993, 32(4), 457–461.

4.  The effects of gamma-ray irradiation of PET electret

      Liu A, Wu H, and Zhou Y

     Journal of Xiamen University (Natural Science) , 1993, 32(4), 457–461.

3.  Stereoselectivity of styrene oxide from styrene epoxidation by Methylomonas sp. GYJ3

      Liu A, Li S, Miao D, Liu P, and Yu W

     Fen Zi Cui Hua (Chinese Journal of Molecular Catalysis), 1991, 5, 377–381.

 

2.  Isolation and purification of methane monooxygenase from Methylomonas species GYJ-3

     Liu A, Li S, Miao D, Yu W, Zhang F, and Su P

     Chinese Chem. Lett., 1991, 2, 419–422.

 

1. Preparative slab electrofocusing of methane monooxygenase from a type I methanotroph Methylomonas GYJ-3

     Liu A, Li S, Yu W, Zhang F, Chen J, and Su P

    Biochem. I., 1990, 22, 959-965.