Skip to Search Skip to Navigation Skip to Content


115.  A new regime of the histidyl-ligated heme-dependent oxygenase superfamily

 Shin I, Wang Y, and Liu A*

  Proc. Natl. Acad. Sci. U.S.A. 2021, 118, in press (10/11/2021)  (DOI: 10.1073/pnas.2106561118 - pending)               
        

      

         Narrator: Inchul Shin
         (LiveSlides: in preparation)

 

 

 

 

114.  Crystal structure of human cysteamine dioxygenase provides a structural rationale for its function as an oxygen sensor

 Wang Y, Shin I, Li J, and Liu A*

  J. Biol. Chem. 2021, 297(4), article 101176, 1-10 (DOI: 10.1016/j.jbc.2021.101176)    
 
      

         Narrator: Yifan (Amber) Wang

 

113.  HygY is a twitch radical SAM epimerase with latent dehydrogenase activity revealed upon mutation of a single cysteine residue

 Besandre R, Chen Z, Davis I, Zhang J, Ruszczycky M, Liu A, and and Liu H-w*

  J. Am. Chem. Soc. 2021, 143, 15152–15158  (DOI: 10.1021/jacs.1c05727)    

      

112.  Capillary electrochromatography-mass spectrometry of kynurenine pathway metabolites

 Chawdhury A, Shamsi SA*, Miller A, and Liu A

  J. Chromatogr. A. 2021, 1651, 462294 (1-14)  (DOI: 10.1016/j.chroma.2021.462294)    

      

111.  Molecular rationale for partitioning between C-H and C-F bond activation in heme-dependent tyrosine hydroxylase

 Wang Y, Davis I, Shin I, Xu H, and Liu A*

  J. Am. Chem. Soc. 2021, 143(12), 4680-4693  (DOI: 10.1021/jacs.1c00175)    
 
      

      

         Narrators: Yifan Wang & Ian Davis
         (LiveSlides: in preparation)

      

110.  A novel catalytic heme cofactor in SfmD with a single thioether bond and a bis-His ligand set revealed by de novo crystal structural and spectroscopic study

 Shin I, Davis I, Nieves-Merced K, Wang Y, McHardy S, and Liu A*

  Chem. Sci. 2021, 12(11), 3984-3998 (Edge Article)  (DOI: 10.1039/D0SC06369J)               
        

      

             Inchul Shin
            (MP4, 13'24")


      


109.  Heme binding to HupZ with a C-terminal tag from Group A Streptococcus

 Traore ES, Li J, Chiura T, Geng J, Sachla A, Yoshimoto F, Eichenbaum Z, Davis I, Max P*, and Liu A*

  Molecules 2021, 26(3), 549  (DOI: 10.3390/molecules26030549)               
        

      

            Narrator: Ephrahime S. Traore
            (LiveSlides: pending)



108.  Diflunisal derivatives as modulators of ACMS decarboxylase targeting the tryptophan-kynurenine pathway

  Yang Y, Borel T, de Azambuja F, Johnson D, Sorrentino JP, Udokwu C, Davis I, Liu A*, and Altman RA*

  J. Med. Chem. 2021, 64(1), 797–811  (DOI: 10.1021/acs.jmedchem.0c01762)               
        

      

            Narrator:
     (LiveSlides: not available)



107.  Formation of monofluorinated radical cofactor in galactose oxidase through copper-mediated C−F bond scission

  Li J, Davis I, Griffith WP, and Liu A*

  J. Am. Chem. Soc. 2020, 142(44), 18753-18757  (DOI: 10.1021/jacs.0c08992)               
        

      

            Narrator: Jiasong Li
            (MP4, 7'39")



106.  Observing 3-hydroxyanthranilate-3,4-dioxygenase in action through a crystalline lens

  Wang Y, Liu KF, Yang Y, Davis I, and Liu A*

  Proc. Natl. Acad. Sci. U.S.A. 2020, 117(33) 19720-19730 (PNAS Direct Submission)  (DOI: 10.1073/pnas.2005327117)               
        

      

   Narrators: Yifan Wang & Ian Davis

(This is an enzyme action movie published by PNAS)







105.  Characterization of the non-heme iron center of cysteamine dioxygenase and its interaction with substrates

  Wang Y, Davis I, Yang Y, Chen Y, Naik SG, Griffith WP, and Liu A*

  J. Biol. Chem. 2020, 295(33), 11789-11802  (DOI: 10.1074/jbc.RA120.013915)               
        

      

            Narrator: Yifan Wang




104.  Kinetic and spectroscopic characterization of the catalytic ternary complex of tryptophan 2,3-dioxygenase

  Geng J, Weitz AC, Dornevil K, Hendrich MP, and Liu A*

  Biochemistry 2020, 59(30), 2813-2822  (DOI: 10.1021/acs.biochem.0c00179)
 


103.  Carbon-fluorine bond cleavage mediated by metalloenzymes

  Wang Y and Liu A*

  Chem. Soc. Rev. 2020, 49(14), 4906-4925 (DOI: 10.1039/C9CS00740G)               
        

      

   Narrator: Yifan Wang

               (pending)


102.  Substrate-assisted hydroxylation and O-demethylation in the peroxidase-like cytochrome P450 enzyme CYP121

  Nguyen RC, Yang Y, Wang Y, Davis I, and Liu A*

  ACS Catalysis 2020, 10(2), 1628-1639  (DOI: 10.1021/acscatal.9b04596)               
        

      

       Narrator: Romie C. Nguyen

 


101.  Crystal structures of L-DOPA dioxygenase from Streptomyces sclerotialus

  Wang Y, Shin I, Fu Y, Colabroy KL*, and Liu A*

  Biochemistry 2019, 58(52), 5339-5350  (DOI: 10.1021/acs.biochem.9b00396)               
  (invited original contribution for a special issue “Current Topics in Mechanistic Enzymology 2019”)

        

      

  Narrators: Yifan Wang & Inchul Shin

 

 

 



100.  Quaternary structure of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) controls its activity
    (Running title: Protein quaternary structure as a means to regulate activity)

   Yang Y, Davis I, Matsui T, Rubalcava I, and Liu A*

   J. Biol. Chem. 2019, 294(30), 11609-11621  (DOI: 10.1074/jbc.RA119.009035)   (LiveSlide video presentation)   featured as a JBC cover story
 


99.   Biocatalytic carbon-hydrogen and carbon-fluorine bond cleavage through hydroxylation promoted by a histidyl-ligated heme enzyme

  Wang Y, Davis I, Shin I, Wherritt DJ, Griffith WP, Dornevil K, Colabroy KL, and Liu A*

  ACS Catal. 2019, 9(6), 4764-4776  (DOI: 10.1021/acscatal.9b00231)   featured as an ACS Editors’ Choice article
 

      

      

      

   Narrators: Yifan Wang and Ian Davis

  (Short version published by ACS: 8 slides)

  (Full version: 22 slides)

 

 


98.   Probing the Cys-Tyr cofactor biogenesis in cysteine dioxygenase by the genetic incorporation of fluorotyrosine

  Li J, Koto, T, Davis I, and Liu A*

  Biochemistry 2019, 58(17), 2218-2227  (DOI: 10.1021/acs.biochem.9b00006)  featured as an alternate ACS Biochemistry cover story
 


97.   Cleavage of a carbon–fluorine bond by an engineered cysteine dioxygenase

  Li J, Griffith WP, Davis I, Shin I, Wang J, Li F, Wang Y, Wherritt D, and Liu A*

  Nat. Chem. Biol. 2018, 14(9), 853-860  (DOI: 10.1038/s41589-018-0085-5)
 


96.   Backbone dehydrogenation in pyrrole-based pincer ligands

  Krishnan VM, Davis I, Baker TM, Curran DJ, Arman H, Neidig ML, Liu A, and Tonzetich ZJ*

  Inorg. Chem. 2018, 57(15), 9544-9553  (DOI: 10.1021/acs.inorgchem.8b01643)
 


95.   Adapting to oxygen: 3-Hydroxyanthranilate 3,4-dioxygenase employs loop dynamics to accommodate two substrates with disparate polarities

  Yang Y, Liu F*, and Liu A*

  J. Biol. Chem. 2018, 293(27), 293, 10415-10424  (DOI: 10.1074/jbc.RA118.002698)                                    featured as a JBC cover story
 


94.   Cofactor biogenesis in cysteamine dioxygenase: C-F bond cleavage with genetically incorporated unnatural tyrosine

  Wang Y, Griffith WP, Li J, Koto, T, Wherritt D, Fritz E, and Liu A*

  Angew. Chem. Int. Ed. 2018, 57(27), 8149-8153  (DOI: 10.1002/ange.201803907 & 10.1002/anie.201803907)
 


93.   Reassignment of the human aldehyde dehydrogenase ALDH8A1 (ALDH12) to the kynurenine pathway in tryptophan catabolism

  Davis I, Yang Y, Wherritt D, and Liu A*

  J. Biol. Chem. 2018, 293(25), 9594-9603  (DOI: 10.1074/jbc.RA118.003320)
 


92.   Stepwise O-atom transfer in heme-based tryptophan dioxygenase: Role of substrate ammonium in epoxide ring opening

  Shin I, Ambler BR, Wherritt DJ, Griffith WP, Maldonado AC, Altman RA, and Liu A*

  J. Am. Chem. Soc. 2018, 140(12), 4372-4379  (DOI: 10.1021/jacs.8b00262)
 


91.   High-frequency/high-field EPR and theoretical studies of tryptophan-based radicals

  Davis I, Koto T, Terrell JR, Kozhanov A, Krzystek J, and Liu A*

  J. Phys. Chem. A 2018, 122(12), 3170-3176  (DOI: 10.1021/acs.jpca.7b12434)
 


90.   Radical trapping study of the relaxation of bis-Fe(IV) MauG

  Davis I, Koto T, and Liu A*

  Reactive Oxygen Species, 2018, 5(13), 46-55  (DOI: 10.20455/ros.2018.801)
 


89.   Probing ligand exchange in the P450 enzyme CYP121 from Mycobacterium tuberculosis:
   Dynamic equilibrium of the distal heme ligand as a function of pH and temperature

  Fielding AJ, Dornevil K, Ma L, Davis I, and Liu A*

  J. Am. Chem. Soc. 2017, 139(48), 17484-17499  (DOI: 10.1021/jacs.7b08911)
 


88.   Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron-hole hopping within the enzyme

  Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, and Goodwin DC*

  J. Biol. Chem., 2017, 292(45), 18408-18421  (DOI: 10.1074/jbc.M117.791202)
 


87.   Cross-linking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway

  Dornevil K, Davis I, Fielding AJ, Terrell JR, Ma L, and Liu A*

  J. Biol. Chem., 2017, 292(33), 13645-13657  (DOI: 10.1074/jbc.M117.794099)
 


86.   Hypertryptophanemia due to tryptophan 2,3-dioxygenase deficiency

  Ferreira F,* Shin I, Sosova I, Dornevil K, Jain Shailly, Dewey D, Liu F, and Liu A*

  Mol. Genet. Metab., 2017, 120(4), 317-324  (DOI: 10.1016/j.ymgme.2017.02.009)
 


85.   Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics

  Wang Y, Li J, and Liu A*

  J. Biol. Inorg. Chem., 2017, 22(2), 395-405  (DOI: 10.1007/s00775-017-1436-5)

  (invited article for a special issue of the journal under the theme of 60 Years of Oxygen Activation)
 


84.   Heterolytic O-O bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG

  Geng J, Huo L, and Liu A*

  J. Inorg. Biochem., 2017, 167, 60-67  (DOI: 10.1016/j.jinorgbio.2016.11.013)
 


83.   A pitcher-and-catcher mechanism drives endogenous substrate isomerization by a dehydrogenase in kynurenine metabolism

  Yang Y, Davis I, Ha U, Wang Y, Shin I, and Liu A*

  J. Biol. Chem., 2016, 291(51), 26252-26261  (DOI: 10.1074/jbc.M116.759712)

  (featured as "Papers of the Week and selected, after publication, in a collection of Enzymology virtual issue)
 


82.   Control of carotenoid biosynthesis through a heme-based cis-trans isomerase

  Beltrán J, Kloss B, Hosler JP, Geng J, Liu A, Modi A, Dawson JH, Sono M, Shumskaya M, Ampomah-Dwamena C, Love JD, and Wurtzel ET*

  Nat. Chem. Biol., 2015, 11(8), 598-605  (DOI: 10.1038/nchembio.1840)
 


81.   What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? (Invited Editorial)

  Davis I and Liu A*

  Expert Review of Neurotherapeutics, 2015, 15(7), 719-721  (DOI: 10.1586/14737175.2015.1049999)
 


80.   An iron reservoir to the catalytic metal: The rubredoxin iron in an extradiol dioxygenase

  Liu F, Geng J, Gumpper RH, Barman A, Davis I, Ozarowski A, Hamelberg D, and Liu A*

  J. Biol. Chem., 2015, 290(25), 15621-15634  (DOI: 10.1074/jbc.M115.650259)
 


79.   Probing bis-Fe(IV) MauG: Experimental evidence for the long-range charge-resonance model

  Geng J, Davis I, and Liu A*

  Angew. Chem. Int. Ed., 2015, 54, 3692-3696  (DOI: 10.1002/ange.201410247 & 10.1002/anie.201410247)
  (This paper provides further experimental evidence supporting the biological Charge Resonance stabilization phenomenon described in our manuscript #71).      

     


78.   Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

  Huo L, Davis I, Liu F, Andi B, Esaki S, Hiroaki I, Li T, Hasegawa Y, Orville AM, and Liu A*

  Nat. Commun., 2015, 6:5935  (DOI: 10.1038/ncomms6935)
  (This article defines the structure of a kynurenine pathway dehydrogenase and a sp3-to-sp2 transition during catalysis)  

     


77.   Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): A structural and mechanistic unveiling

  Huo L, Liu F, Hiroaki I, Li T, Hasegawa Y, and Liu A*

  Proteins, 2015, 83(1), 178-187  (DOI: 10.1002/prot.24722)
     


76.   Bis-Fe(IV): Nature's sniper for long-range oxidation

  Geng J, Davis I, Liu F, and Liu A*

  J. Biol. Inorg. Chem., 2014, 19(7), 1057-1067  (Invited Review Article)   (DOI: 10.1007/s00775-014-1123-8)    


75.   Amidohydrolase Superfamily

  Liu A* and Huo L

  Encyclopedia of Life Sciences, 2014, 1-11  (DOI: 10.1002/9780470015902.a0020546.pub2)    


74.   Heme-dependent dioxygenases in tryptophan oxidation

  Geng J and Liu A*

  Arch. Biochem. Biophys., 2014, 544, 18-26 (Invited Review Article)  (DOI: 10.1016/j.abb.2013.11.009)    


73.   The Power of two: Arginine 51 and arginine 239* from a neighboring subunit are essential for catalysis in α-amino-β-carboxymuconate-ε-semialdehyde
   decarboxylase

  Huo L, Davis I, Chen L, and Liu A*

  J. Biol. Chem., 2013, 288(43), 30862-30871  (DOI: 10.1074/jbc.M113.496869)


72.   Pirin is an iron-dependent redox regulator of NF-κB

  Liu F, Rehmani I, Esaki S, Fu R, Chen L, Serroano V, and Liu A*

  Proc. Natl. Acad. Sci. U.S.A., , 2013, 110(24), 9722-9727 (PNAS Direct Submission)  (DOI: 10.1073/pnas.1221743110)

             (** Faculty of 1000 recommended article )


71.   Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG

  Geng J, Dornevil K, Davidson VL, and Liu A*

  Proc. Natl. Acad. Sci. U.S.A., , 2013, 110(24), 9639-9644 (PNAS Direct Submission)  (DOI: 10.1073/pnas.1301544110)


70.   Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis

  Yukl ET, Liu F, Krzystek J, Shin S, Jensen LMR, Davidson VL, Wilmot CM,* and Liu A*

  Proc. Natl. Acad. Sci. U. S. A., , 2013, 110(12), 4569-4573 (PNAS Direct Submission)  (DOI: 10.1073/pnas.1215011110)
             * Faculty of 1000 recommended article


69.   Development of a CZE-ESI-MS assay with a sulfonated capillary for profiling picolinic acid and quinolinic acid formation in multienzyme system

  Wang X, Davis I, Liu A,* and Shamsi SA*

  Electrophoresis, 2013, 34(12), 1828-1835  (DOI: 10.1002/elps.201200679)    


68.   An unexpected copper catalyzed 'reduction' of an arylazide to amine through the formation of a nitrene intermediate

 Peng H, Dornevil K, Draganov A, Chen W, Dai C, Nelson WH, Liu A,* and Wang B*

 Tetrahedron, 2013, 69, 5079-5085 (dedicated to the memory of Professor William H. Nelson) (DOI: 10.1016/j.tet.2013.04.091)    


67.   Improved separation and detection of picolinic acid and quinolinic acid by capillary electrophoresis-mass spectrometry: Application to the analysis of human cerebrospinal fluid

  Wang X, Davis I, Liu A, Miller A, and Shamsi SA*

  J. Chromatogr. A., 2013, 1316, 147-153  (DOI: doi.org/10.1002/elps.201200679)


66.   Chemical rescue of the distal histidine mutants of tryptophan 2,3-dioxygenase

  Geng J, Dornevil K, and Liu A*

  J. Am. Chem. Soc., 2012, 134, 12209-12218   (DOI: 10.1021/ja304164b)


65.   Evidence for a dual role of an active site histidine in α -amino-β - carboxymuconate- ε - semialdehyde decarboxylase

 Huo L, Fielding AJ, Chen Y, Li T, Iwaki H, Hosler JP, Chen L, Hasegawa Y, Que Jr, L, and Liu A*

  Biochemistry, 2012, 51(29), 5811-5821 (DOI: doi.org/10.1021/bi300635b)   


64.   Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity

 Tarboush NA, Shin S, Geng J, Liu A, and Davidson VL*

  FEBS Lett., 2012, 586, 4339-4343  (DOI: 10.1016/j.febslet.2012.10.044)


63.   Decarboxylation mechanisms in biological system

 Li T, Huo L, Pulley C, and Liu A*

 Bioorg. Chem., 2012, 43, 2-14  (DOI: 10.1016/j.bioorg.2012.03.001)


62.   The role of calcium in metalloenzyme: Effects of calcium removal on the axial ligation geometry and magnetic properties of the catalytic diheme center in MauG    

 Chen Y, Naik SG, Krzystek J, Shin S, Nelson WH, Xue S, Yang JJ, Davidson VL, and Liu A*

  Biochemistry, 2012, 51, 1586-1597  (DOI: 10.1021/bi201575f)


61.   Tryptophan tryptophylquinone biosynthesis: A radical approach to posttranslational modification

 Davidson VL and Liu A

  Biochim. Biophys. Acta, 2012, 1824, 1299-1305  (DOI: 10.1016/j.bbapap.2012.01.008)


60.   Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG

 Feng M, Jensen LMR, Yukl ET, Wei X, Liu A, Wilmot CM, and Davidson VL*

  Biochemistry, 2012, 51(8), 1598-1606  (DOI: 10.1021/bi201882e)


59.   The roles of Rhodobacter sphaeroides copper chaperones PCuAC and Sco (PrrC) in the assembly of the copper centers of the aa3-type and the cbb3-type cytochrome c oxidases

 Thompson AK, Gray J, Liu A, Hosler JP*

  Biochim. Biophys. Acta, 2012, 1817, 955-964  (DOI: 10.1016/j.bbabio.2012.01.003)


58.   Synthesis, characterisation, and preliminary in vitro studies of vanadium(IV) complexes with a schiff base and thiosemicarbazones as mixed ligands

 Lewis NA, Liu F, Seymour L, Magnusen A, Erves TR, Arca JF, Beckford FA, Venkatraman R, González-Sarrías A, Fronczek FR, VanDerveer DG, Seeram NP, Liu A, Jarrett WJ, Holder AH*

  Eur. J. Inorg. Chem., 2012 , 4, 664-677  (DOI: 10.1002/ejic.201100898)


57.   Mutagenesis of tryptophan199 suggests that electron hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis

 Tarboush NA, Jensen LMR, Yukl ET, Geng J, Liu A, Wilmot CM, and Davidson VL

  Proc. Natl. Acad. Sci. U.S.A., 2011, 108(41), 16956-16961  (DOI: 10.1073/pnas.1109423108)   


56.   The reactivation mechanism of tryptophan 2,3-dioxygenase by hydrogen peroxide

 Fu R, Gupta R, Geng J, Dornevil K, Wang S, Hendrich MP, and Liu A*

 J. Biol. Chem., 2011, 286(30), 26541-26554  (DOI: 10.1074/jbc.M111.253237)

 

55.  Nature's strategy for oxidizing tryptophan: EPR and Mössbauer characterization of the unusual high-valent heme iron intermediates/p>

      in: Mössbauer Spectroscopy:  Applications in Chemistry, Biology, Industry, and Nanotechnology. 

      Dornevil K and Liu A,* edited by Virender K. Sharma, Goestar Klingelhoefer, and Tetsuaki Nishida, 2013, pp. 315-323 ISBN 978-1-118-05724-7

 

54.  Redox and oxygen sensing in the regulation of transcription by metalloproteins

      in: Molecular Basis of Oxidative Stress: Chemistry, Mechanisms, and Disease Pathogenesis.

       Rehmani I, Liu F and Liu A,* edited by Frederick A. Villamena, John Wiley & Sons, Inc., 2013, pp. 179-201   ISBN 978-0-470-57218-4


53.  The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis

Shin S, Feng M, Chen Y, Jensen LMR, Tachikawa H, Wilmot CM, Liu A, and Davidson VL*

Biochemistry, 2011, 50, 144-150  (DOI: 10.1021/bi101819m)


52.  Proline 96 of the copper ligand loop of amicyanin regulates electron transfer from methylamine dehydrogenase by positioning other residues at the protein-protein interface

Choi M, Sukumar N, Mathews FS, Liu A, and Davidson VL*

Biochemistry, 2011, 50(7), 1265-1273  (DOI: 10.1021/bi101794y)


51.  EPR and Mössbauer spectroscopy show inequivalent hemes in tryptophan dioxygenase

Gupta R, Fu R, Liu A, and Hendrich MP*

J. Am. Chem. Soc., 2010, 132(3), 1098-1109  (DOI: 10.1021/ja908851e)


50.  Mutagenic analysis of Cox11 of Rhodobacter sphaeroides: Insights into the assembly of CuB of cytochrome c oxidase

Thompson, AK, Smith D, Gray J, Carr HS, Liu A, Winge DR, Hosler JP* 

Biochemistry, 2010, 49(27), 5651-5661  (DOI: 10.1021/bi1003876)


49.  Heme iron nitrosyl complex of MauG reveals efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands

Fu R, Liu F, Davidson VL, and Liu A*

Biochemistry, 2009, 48(49), 11603-11605  (DOI: 10.1021/bi9017544)
  


48.  Electron Paramagnetic Resonance (EPR) in Enzymology

       Liu A

       Wiley Encyclopedia of Chemical Biology, 2008, 1, 591-601  (DOI: 10.1002/9780470048672.wecb668)


47.  A single EF-hand isolated from STIM1 forms dimer in the absence and presence of Ca2+

Huang Y, Zhou Y, Wong HC, Chen Y, Wang S, Castiblanco A, Liu A, Yang JJ*

FEBS J. 2009, 276, 5589-5597  (DOI: 10.1111/j.1742-4658.2009.07240.x)


46.  Defining the role of the axial ligand of the type 1 copper site in amicyanin by replacement of methionine with leucine

Choi M, Sukumar N, Liu A, and Davidson VL*

Biochemistry, 2009, 48(39), 9174-9184  (DOI: 10.1021/bi900836h)


45.  A catalytic di-heme bis-Fe(IV) form of MauG, Alternative to an Fe(IV)=O porphyrin radical

       Li X, Fu R, Lee S, Krebs C, Davidson VL,* and Liu A*

       Proc. Natl. Acad. Sci. U.S.A., 2008, 105(25), 8597-8600 (PNAS Direct Submission)  (DOI: 10.1073/pnas.0801643105
      

 

44.  Kinetic and physical evidence that the di-heme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed

       tryptophan tryptophylquinone

Li X, Fu R, Liu A*, and Davidson VL*

Biochemistry, 2008, 47(9), 2908–2912  (DOI: 10.1021/bi702259w)
  


43.  Purification and characterization of the epoxidase catalyzing the formation of fosfomycin from Pseudomonas syringae

Munos JW, Moon S-J, Mansoorabadi SO, Hong L, Yan F, Liu A, and Liu H-w*

      Biochemistry, 2008, 47(33), 8726–8735  (DOI: 10.1021/bi800877v)


42.  Amidohydrolase Superfamily

Liu A*, Li T, and Fu R

Encyclopedia of Life Sciences, 2007, 1-8 (DOI: 10.1002/9780470015902.a0020546)


41.  Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropyl phosphonic acid epoxidase using 17O-enriched substrates

Yan F, Moon S-J, Liu P, Zhao Z, Lipscomb JD, Liu A, and Liu H-w*

Biochemistry, 2007, 46(44), 12628-12638  (DOI: 10.1021/bi701370e)


40.  Detection of transient intermediates in the metal-dependent non-oxidative decarboxylation catalyzed by α-amino-β-carboxymuconic-ε-semialdehyde decarboxylase
      

Li T, Ma J, Hosler JP, Davidson VL, and Liu A*

J. Am. Chem. Soc., 2007, 129(30), 9278-9279  (DOI: 10.1021/ja073648le)


39.  Crystallographic analysis of α-amino-β-carboxymuconic-ε-semialdehyde decarboxylase: Insight into the active site and catalytic mechanism of a novel decarboxylation reaction

Martynowski D., Eyobo Y., Li T, Yang K., Liu A,* and Zhang H*

Biochemistry 2006, 45(21), 10412-10421  (DOI: 10.1021/bi060108c)

 

38.  Transition metal-catalyzed nonoxidative decarboxylation reactions

Liu A* and Zhang H

Biochemistry, 2006, 45(35), 10407-10411 (a New Concept paper)  (DOI: 10.1021/bi061031v)

 

37.  α-Amino-b-carboxymuconic-ε-semialdehyde decarboxylase (ACMSD) is a new member of the amidohydrolase superfamily

Li T, Iwaki H, Fu R, Hasegawa Y, Zhang H, Liu A*

Biochemistry, 2006, 45(21), 6628-6634  (DOI: 10.1021/bi060108c)

   


36.  The mechanism of inactivation of 3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3 hydroxyanthranilate

Colabroy KL, Zhai H, Li T, Ge Y, Zhang Y, Liu A, Ealick SE, McLafferty FW, and Begley TP*

Biochemistry, 2005, 44(21), 7623–7631  (DOI: 10.1021/bi0473455)

 

35.  Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor

Li T, Walker AL, Iwaki H, Hasegawa Y, Liu A*

J. Am. Chem. Soc., 2005, 127(35), 12282–12290  (DOI: 10.1021/ja0532234)

        


34.  Site-directed mutagenesis and spectroscopic studies of the iron-binding site of (S)-2 hydroxypropylphosphonic acid epoxidase

Yan F, Li T, Lipscomb JD, Liu A, and Liu HW*

Arch. Biochem. Biophys., 2005, 442, 82–91 (DOI: 10.1016/j.abb.2005.07.024)

 

33.  Substrate radical intermediates in soluble methane monooxygenase

 Liu A, Jin Y, Zhanga J, Brazeaua BJ and Lipscomb JD.

 Biochem. Biophys. Res. Commun., 2005, 338, 254–261 (DOI: 10.1016/j.bbrc.2005.08.216)

 

32.  Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers

      Zhou T, Mo Y, Liu A, and Tsai KR

      Inorg. Chem., 2004, 43(3), 923–930 (DOI: 10.1021/ic0342301)

 

31.  An engineered CuA amicyanin capable of intramolecular electron transfer reactions

Jones LH, Liu A, and Davidson VL*

J. Biol. Chem., 2003, 278(47), 47269–47274 (DOI: 10.1074/jbc.M308863200)

 

30.  MauG, a novel di-heme protein required for tryptophan tryptophylquinone biogenesis

Wang Y., Graichen ME, Liu A, Pearson AR, Wilmot CM, and Davidson VL*

Biochemistry, 2003, 42, 7318–7325 (DOI: 10.1021/bi034243q)

 

29.  O2- and α-ketoglutarate-dependent tyrosyl radical formation in TauD, an α-keto acid dependent non-heme iron dioxygenase

        Ryle MJ, Liu A, Muthukumaran RB, Koehntop KD, McCracken J, Que L Jr., and Hausinger RP. Biochemistry, 2003, 42, 1854–1862 (DOI: 10.1021/bi026832m)

 

28.  Biochemical and spectroscopic studies on (S)-2-hydroxypropylphosphonic acid epoxidase: a novel mononuclear non-heme iron enzyme

        Liu P, Liu A, Yan F, Wolfe MD, Lipscomb JD, and Liu HW

        Biochemistry, 2003, 42, 11577–11586 (DOI: 10.1021/bi030140w)

 

27.  Interconversion of two oxidized forms of taurine/α-ketoglutarate dioxygenase, a nonheme iron hydroxylase: Evidence for bicarbonate binding

        Ryle MJ, Koehntop KD, Liu A, Que L Jr, and Hausinger RP

Proc. Natl. Acad. Sci. U.S.A., 2003, 100, 3790–3795 (DOI: 10.1073/pnas.0636740100)

 

26.  Reduction of Escherichia coli ribonucleotide reductase with ferrocene derivatives (DOI: 10.1016/S0020-1693(02)01102-7)

        Liu A, Leese DN, Swarts JC, and Sykes AG

Inorg. Chim. Acta, 2002, 337, 83–90 (special edition, invited paper).

 

25.   Resonance Raman studies of the Fe(II)-a-keto acid chromophore

Ho RYN, Mehn MP, Hegg EL, Liu A, Ryle MJ, Hausinger RP, and Que L Jr

         J. Am. Chem. Soc., 2001, 123, 5022–5029  (DOI: 10.1021/ja0041775)

 

24.   Alternative reactivity of an α-ketoglutarate-dependent Fe(II) oxygenase: enzyme self hydroxylation

Liu A, Ho RYN, Que L Jr, Ryle MJ, and Hausinger RP

         J. Am. Chem. Soc., 2001, 123, 5126–5127  (DOI: 10.1021/ja005879x)

 

 

23.   Chemical reduction of the diferric-radical center in protein R2 from mouse ribonucleotide reductase is independent of the proposed radical transfer pathway

         Davydov A, Ohrstrom M, Liu A, and Gräslund A

         Inorg. Chim. Acta, 2002, 331, 65–72 (DOI: 10.1016/S0020-1693(01)00750-2)

 

22.  EPR evidence for a novel interconversion of [3Fe-4S]+ and [4Fe-4S]+ clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro

        Liu A and Gräslund A

        J. Biol. Chem., 2000, 275, 12367–12373  (DOI: 10.1074/jbc.275.17.12367)

 

21.  Yeast ribonucleotide reductase has a heterodimeric iron-radical-containing subunit

        Chabes A, Domkin V, Larsson G, Liu A, Gräslund A, Wijmenga S, and Thelander L

        Proc. Natl. Acad. Sci. U.S.A., 2000, 97, 2474–2479  (DOI: 10.1073/pnas.97.6.2474)

 

20.  Heterogeneity of the local electrostatic environment of the tyrosyl radical in Mycobacterium tuberculosis ribonucleotide reductase observed by high-field EPR spectroscopy

        Liu A, Barra AL, Rubin H, Lu G, and Gräslund A

        J. Am. Chem. Soc., 2000, 122, 1974–1978  (DOI: 10.1021/ja990123n)

 

19.  The anaerobic (class III) ribonucleotide reductase from Lactococcus lactis: Catalytic properties and allosteric regulation of the pure enzyme system

       Torrents E, Buist G, Liu A, Eliasson R, Gibert I, Gräslund A, and Reichard P

       J. Biol. Chem., 2000, 275, 2463–2471 (DOI: 10.1074/jbc.275.4.2463)

 

18.  EPR evidence of two structurally different ferric sites in Mycobacterium tuberculosis ribonucleotide reductase R2-2 protein

        Davydov A, Liu A, and Gräslund A.

        J. Inorg. Biochem., 2000, 80, 213–218 (DOI: 10.1016/s0162-0134(00)00078-7)

 

 

17.  Sequential mechanism of methane dehydrogenation over metal oxide and carbide catalysts

        Zhou T, Liu A, Mo Y, and Zhang H

        J. Phys. Chem. A, 2000, 104, 4505–4513 (DOI: 10.1021/jp9929622)

 

16.  The interaction between iron and the protein radical in aerobic and anaerobic ribonucleotide reductases

        Liu A. Doctoral Thesis, Akademitryck AB 2000, Stockholm, Sweden, ISBN 91-7265-101-6, pp. 1-46

 

15.  New paramagnetic species formed at the expense of the transient tyrosyl radical in mutant  protein R2 F208Y of Escherichia coli ribonucleotide reductase

        Liu A, Sahlin M, Potsch S, Sjöberg BM, Gräslund A

        Biochem. Biophys. Res. Commun., 1998, 246, 740–745 (DOI: 10.1006/bbrc.1998.8701)

 

14.  The tyrosyl free radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket

        Liu A, Potsch S, Davydov A, Barra A, Rubin H, and Gräslund A

        Biochemistry, 1998, 37, 16369–16377 (DOI: 10.1021/bi981471p)

 

13.  Optimal group symmetric localized molecular orbitals

       Zhou T and Liu A.

      Theoret. Chim. Acta, 1994, 88, 375-381.  (PDF: https://link.springer.com/article/10.1007/BF01113555)

 

12.  Symmetry-adaptation of configuration basis in MCSCF method

     Zhou T and Liu A.

    Theoret. Chim. Acta, 1994, 89, 137-145  (PDF: https://link.springer.com/article/10.1007/BF01132797)

 

11.  Study of localized molecular orbitals using group theory methods and its approach to the multi-electron correlation problem: The symmetric reduction of multi-center integrals in multiconfigurational self-consistent-field approach

      Zhou T and Liu A

      J. Comp. Chem., 1994, 15, 858-865  (DOI: 10.1002/jcc.540150807)

 

10.  Oxygenation of methane to methanol by methane monooxygenase of Methylomonas species GYJ-3

     Liu A and Li S

     J. Nat. Gas Chem., 1993, 2, 109–118

9.  Formation of propylene oxide by Methylomonas GYJ-3 in a gas-solid bioreactor

     Li S, Gao C, and Liu A

     Chinese Chem. Lett., 1991, 4, 303–306

8.  Studies on rationalization of nitrogenase active center models*novel nitrogenase inhibitors and promoters as chemical probes

      Liu A, Zhang H, Yuan Y, Xu L, Wan H, and Tsai KR

     Fen Zi Cui Hua (Chinese Journal of Molecular Catalysis) , 1994, 8, 81–85

7.  Effects of bidentate ligands dppe and dppm on spontaneous self-assembly of Mo-Fe-S cluster compounds

      Liu A, Yuan Y, Zhou M, Yong R, Zhang H, Wan H, and Tsai KR

     Journal of Xiamen University (Natural Science) , 1994, 33(6), 809–813

6.  Structural information of nitrogenase active-center clusters deduced from the EHMO study

      Liu A, Zhou T, Wan H, and Tsai KR

     Chemical Journal of Chinese Universities, 1993, 14, 996–999

5.  The effects of gamma-ray irradiation of PET electret

      Liu A, Wu H, and Zhou Y

     Journal of Xiamen University (Natural Science) , 1993, 32(4), 457–461

4.  The effects of gamma-ray irradiation of PET electret

      Liu A, Wu H, and Zhou Y

     Journal of Xiamen University (Natural Science), 1993, 32(4), 457–461

3.  Stereoselectivity of styrene oxide from styrene epoxidation by Methylomonas sp. GYJ3

      Liu A, Li S, Miao D, Liu P, and Yu W

     Fen Zi Cui Hua (Chinese Journal of Molecular Catalysis), 1991, 5, 377–381

2.  Isolation and purification of methane monooxygenase from Methylomonas species GYJ-3

     Liu A, Li S, Miao D, Yu W, Zhang F, and Su P

     Chinese Chem. Lett., 1991, 2, 419–422

1. Preparative slab electrofocusing of methane monooxygenase from a type I methanotroph Methylomonas GYJ-3

     Liu A, Li S, Yu W, Zhang F, Chen J, and Su P

    Biochem. I., 1990, 22, 959-965