Skip to Search Skip to Navigation Skip to Content

102.  Substrate-assisted hydroxylation and O-demethylation in the peroxidase-like cytochrome P450 enzyme CYP121

  Nguyen RC, Yang Y, Wang Y, Davis I, and Liu A*

  ACS Catalysis 2020, 10(2), 1628-1639  (DOI: 10.1021/acscatal.9b04596)               


  Narrators: Romie Nguyen & Ian Davis

              (in preparation)

101.  Crystal structures of L-DOPA dioxygenase from Streptomyces sclerotialus

  Wang Y, Shin I, Fu Y, Colabroy KL*, and Liu A*

  Biochemistry 2019, 58(52), 5339-5350  (DOI: 10.1021/acs.biochem.9b00396)               
  (invited original contribution for a special issue “Current Topics in Mechanistic Enzymology 2019”)


  Narrators: Yifan Wang & Inchul Shin

             (8 slides, MP4)



100.  Quaternary structure of α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD) controls its activity
    (Running title - our original title: Protein quaternary structure as a means to regulate activity)

   Yang Y, Davis I, Matsui T, Rubalcava I, and Liu A*

   J. Biol. Chem. 2019, 294(30), 11609-11621  (DOI: 10.1074/jbc.RA119.009035)   (LiveSlide video presentation)   featured as a JBC cover story

99.   Biocatalytic carbon-hydrogen and carbon-fluorine bond cleavage through hydroxylation promoted by a histidyl-ligated heme enzyme

  Wang Y, Davis I, Shin I, Wherritt DJ, Griffith WP, Dornevil K, Colabroy KL, and Liu A*

  ACS Catal. 2019, 9(6), 4764-4776  (DOI: 10.1021/acscatal.9b00231)   featured as an ACS Editors’ Choice article




 Narrators: Yifan Wang and Ian Davis

             (ACS, 8 slides, MP4)

             (Full version: 22 slides)


98.   Probing the Cys-Tyr cofactor biogenesis in cysteine dioxygenase by the genetic incorporation of fluorotyrosine

  Li J, Koto, T, Davis I, and Liu A*

  Biochemistry 2019, 58(17), 2218-2227  (DOI: 10.1021/acs.biochem.9b00006)  featured as an alternate ACS Biochemistry cover story

97.   Cleavage of a carbon–fluorine bond by an engineered cysteine dioxygenase

  Li J, Griffith WP, Davis I, Shin I, Wang J, Li F, Wang Y, Wherritt D, and Liu A*

  Nat. Chem. Biol. 2018, 14(9), 853-860  (DOI: 10.1038/s41589-018-0085-5)

96.   Backbone dehydrogenation in pyrrole-based pincer ligands

  Krishnan VM, Davis I, Baker TM, Curran DJ, Arman H, Neidig ML, Liu A, and Tonzetich ZJ*

  Inorg. Chem. 2018, 57(15), 9544-9553  (DOI: 10.1021/acs.inorgchem.8b01643)

95.   Adapting to oxygen: 3-hydroxyanthrinilate 3,4-dioxygenase employs loop dynamics to accommodate two substrates with disparate polarities

  Yang Y, Liu F*, and Liu A*

  J. Biol. Chem. 2018, 293(27), 293, 10415-10424  (DOI: 10.1074/jbc.RA118.002698)                                    featured as a JBC cover story

94.   Cofactor biogenesis in cysteamine dioxygenase: C-F bond cleavage with genetically incorporated unnatural tyrosine

  Wang Y, Griffith WP, Li J, Koto, T, Wherritt D, Fritz E, and Liu A*

  Angew. Chem. Int. Ed. 2018, 57(27), 8149-8153  (DOI: 10.1002/ange.201803907 & 10.1002/anie.201803907)

93.   Reassignment of the human aldehyde dehydrogenase ALDH8A1 (ALDH12) to the kynurenine pathway in tryptophan catabolism

  Davis I, Yang Y, Wherritt D, and Liu A*

  J. Biol. Chem. 2018, 293(25), 9594-9603  (DOI: 10.1074/jbc.RA118.003320)

92.   Stepwise O-atom transfer in heme-based tryptophan dioxygenase: Role of substrate ammonium in epoxide ring opening

  Shin I, Ambler BR, Wherritt DJ, Griffith WP, Maldonado AC, Altman RA, and Liu A*

  J. Am. Chem. Soc. 2018, 140(12), 4372-4379  (DOI: 10.1021/jacs.8b00262)

91.   High-frequency/high-field EPR and theoretical studies of tryptophan-based radicals

  Davis I, Koto T, Terrell JR, Kozhanov A, Krzystek J, and Liu A*

  J. Phys. Chem. A 2018, 122(12), 3170-3176  (DOI: 10.1021/acs.jpca.7b12434)

90.   Radical trapping study of the relaxation of bis-Fe(IV) MauG

  Davis I, Koto T, and Liu A*

  ROS, 2018, 5(13), 46-55  (DOI: 10.20455/ros.2018.801)

89.   Probing ligand exchange in the P450 enzyme CYP121 from Mycobacterium tuberculosis:
   Dynamic equilibrium of the distal heme ligand as a function of pH and temperature

  Fielding AJ, Dornevil K, Ma L, Davis I, and Liu A*

  J. Am. Chem. Soc. 2017, 139(48), 17484-17499  (DOI: 10.1021/jacs.7b08911)

88.   Mutual synergy between catalase and peroxidase activities of the bifunctional enzyme KatG is facilitated by electron-hole hopping within the enzyme

  Njuma OJ, Davis I, Ndontsa EN, Krewall JR, Liu A, and Goodwin DC*

  J. Biol. Chem., 2017, 292(45), 18408-18421  (DOI: 10.1074/jbc.M117.791202)

87.   Crosslinking of dicyclotyrosine by the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis proceeds through a catalytic shunt pathway

  Dornevil K, Davis I, Fielding AJ, Terrell JR, Ma L, and Liu A*

  J. Biol. Chem., 2017, 292(33), 13645-13657  (DOI: 10.1074/jbc.M117.794099)

86.   Hypertryptophanemia due to tryptophan 2,3-dioxygenase deficiency

  Ferreira F,* Shin I, Sosova I, Dornevil K, Jain Shailly, Dewey D, Liu F, and Liu A*

  Mol. Genet. Metab., 2017, 120(4), 317-324  (DOI: 10.1016/j.ymgme.2017.02.009)

85.   Oxygen activation by mononuclear nonheme iron dioxygenases involved in the degradation of aromatics

  Wang Y, Li J, and Liu A*

  J. Biol. Inorg. Chem., 2017, 22(2), 395-405  (DOI: 10.1007/s00775-017-1436-5)

  (invited article for a special issue of the journal under the theme of 60 Years of Oxygen Activation)

84.   Heterolytic O-O bond cleavage: Functional role of Glu113 during bis-Fe(IV) formation in MauG

  Geng J, Huo L, and Liu A*

  J. Inorg. Biochem., 2017, 167, 60-67  (DOI: 10.1016/j.jinorgbio.2016.11.013)

83.   A pitcher-and-catcher mechanism drives endogenous substrate isomerization by a dehydrogenase in kynurenine metabolism

  Yang Y, Davis I, Ha U, Wang Y, Shin I, and Liu A*

  J. Biol. Chem., 2016, 291(51), 26252-26261  (DOI: 10.1074/jbc.M116.759712)

  (featured as "Papers of the Week and selected, after publication, in a collection of representative papers in the research field of enzymology in a virtual issue)

82.   Control of carotenoid biosynthesis through a heme-based cis-trans isomerase

  Beltrán J, Kloss B, Hosler JP, Geng J, Liu A, Modi A, Dawson JH, Sono M, Shumskaya M, Ampomah-Dwamena C, Love JD, and Wurtzel ET*

  Nat. Chem. Biol., 2015, 11(8), 598-605  (DOI: 10.1038/nchembio.1840)

81.   What is the tryptophan kynurenine pathway and why is it important to neurotherapeutics? (Invited Editorial)

  Davis I and Liu A*

  Expert Review of Neurotherapeutics, 2015, 15(7), 719-721  (DOI: 10.1586/14737175.2015.1049999)

80.   An iron reservoir to the catalytic metal: The rubredoxin iron in an extradiol dioxygenase

  Liu F, Geng J, Gumpper RH, Barman A, Davis I, Ozarowski A, Hamelberg D, and Liu A*

  J. Biol. Chem., 2015, 290(25), 15621-15634  (DOI: 10.1074/jbc.M115.650259)

79.   Probing bis-Fe(IV) MauG: Experimental evidence for the long-range charge-resonance model

  Geng J, Davis I, and Liu A*

  Angew. Chem. Int. Ed., 2015, 54, 3692-3696  (DOI: 10.1002/ange.201410247 & 10.1002/anie.201410247)
  (This paper establishes a biological Charge Resonance stabilization phenomenon previously proposed in our manuscript #71).      


78.   Crystallographic and spectroscopic snapshots reveal a dehydrogenase in action

  Huo L, Davis I, Liu F, Andi B, Esaki S, Hiroaki I, Li T, Hasegawa Y, Orville AM, and Liu A*

  Nat. Commun., 2015, 6:5935  (DOI: 10.1038/ncomms6935)
  (This article defines the structure of a kynurenine pathway dehydrogenase and a sp3-to-sp2 transition during catalysis)  


77.   Human α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase (ACMSD): A structural and mechanistic unveiling

  Huo L, Liu F, Hiroaki I, Li T, Hasegawa Y, and Liu A*

  Proteins, 2015, 83(1), 178-187  (DOI: 10.1002/prot.24722)

76.   Bis-Fe(IV): Nature's sniper for long-range oxidation

  Geng J, Davis I, Liu F, and Liu A*

  J. Biol. Inorg. Chem., 2014, 19(7), 1057-1067  (Invited Review Article)   (DOI: 10.1007/s00775-014-1123-8)    

75.   Amidohydrolase Superfamily

  Liu A* and Huo L

  Encyclopedia of Life Sciences, 2014, 1-11  (DOI: 10.1002/9780470015902.a0020546.pub2)    

74.   Heme-dependent dioxygenases in tryptophan oxidation

  Geng J and Liu A*

  Arch. Biochem. Biophys., 2014, 544, 18-26 (Invited Review Article)  (DOI: 10.1016/    

73.   The Power of two: Arginine 51 and arginine 239* from a neighboring subunit are essential for catalysis in α-amino-β-carboxymuconate-ε-semialdehyde

  Huo L, Davis I, Chen L, and Liu A*

  J. Biol. Chem., 2013, 288(43), 30862-30871  (DOI: 10.1074/jbc.M113.496869)

72.   Pirin is an iron-dependent redox regulator of NF-κB

  Liu F, Rehmani I, Esaki S, Fu R, Chen L, Serroano V, and Liu A*

  Proc. Natl. Acad. Sci. U. S. A., , 2013, 110(24), 9722-9727 (PNAS Direct Submission)  (DOI: 10.1073/pnas.1221743110)

             (** Faculty of 1000 recommended article )

71.   Tryptophan-mediated charge-resonance stabilization in the bis-Fe(IV) redox state of MauG

  Geng J, Dornevil K, Davidson VL, and Liu A*

  Proc. Natl. Acad. Sci. U. S. A., , 2013, 110(24), 9639-9644 (PNAS Direct Submission)  (DOI: 10.1073/pnas.1301544110)

70.   Diradical intermediate within the context of tryptophan tryptophylquinone biosynthesis

  Yukl ET, Liu F, Krzystek J, Shin S, Jensen LMR, Davidson VL, Wilmot CM,* and Liu A*

  Proc. Natl. Acad. Sci. U. S. A., , 2013, 110(12), 4569-4573 (PNAS Direct Submission)  (DOI: 10.1073/pnas.1215011110)
             * Faculty of 1000 recommended article

69.   Development of a capillary zone electrophoresis-electrospray ionization-mass spectrometry assay with a sulfonated capillary for profiling picolinic acid
    and quinolinic acid formation in multienzyme system

  Wang X, Davis I, Liu A,* and Shamsi SA*

  Electrophoresis, 2013, 34(12), 1828-1835  (DOI: 10.1002/elps.201200679)    

68.    An unexpected copper catalyzed 'reduction' of an arylazide to amine through the formation of a nitrene intermediate

 Peng H, Dornevil K, Draganov A, Chen W, Dai C, Nelson WH, Liu A,* and Wang B*

  Tetrahedron, 2013, 69, 5079-5085 (dedicated to the memory of Professor William H. Nelson)         

67.    Improved separation and detection of picolinic acid and quinolinic acid by capillary electrophoresis-mass spectrometry: Application to the analysis of human cerebrospinal fluid

 Wang X, Davis I, Liu A, Miller A, and Shamsi SA*

  J. Chromatogr. A., 2013, 1316, 147-153      

66.    Chemical rescue of the distal histidine mutants of tryptophan 2,3-dioxygenase

 Geng J, Dornevil K, and Liu A*

  J. Am. Chem. Soc., 2012, 134, 12209-12218 

65.    Evidence for a dual role of an active site histidine in α-amino-β-carboxymuconate-ε-semialdehyde decarboxylase

 Huo L, Fielding AJ, Chen Y, Li T, Iwaki H, Hosler JP, Chen L, Hasegawa Y, Que Jr, L, and Liu A*

  Biochemistry, 2012, 51, 5811-5821    

64.    Effects of the loss of the axial tyrosine ligand of the low-spin heme of MauG on its physical properties and reactivity

 Tarboush NA, Shin S, Geng J, Liu A, and Davidson VL*

  FEBS Lett., 2012, 586, 4339-4343  

63.    Decarboxylation mechanisms in biological system (Invited Review Article)

 Li T, Huo L, Pulley C, and Liu A*

 Bioorg. Chem., 2012, 43, 2-14      

62.    The role of calcium in metalloenzyme: Effects of calcium removal on the axial ligation geometry and magnetic properties of the catalytic diheme center in MauG    

 Chen Y, Naik SG, Krzystek J, Shin S, Nelson WH, Xue S, Yang JJ, Davidson VL, and Liu A*

  Biochemistry, 2012, 51, 1586-1597  (DOI: 10.1021/bi201575f)

61.    Tryptophan tryptophylquinone biosynthesis: A radical approach to posttranslational modification

 Davidson VL* and Liu A

  Biochim. Biophys. Acta, 2012, 1824, 1299-1305 (Invited Review Article)

60.    Proline 107 is a major determinant in maintaining the structure of the distal pocket and reactivity of the high-spin heme of MauG

 Feng M, Jensen LMR, Yukl ET, Wei X, Liu A, Wilmot CM, and Davidson VL*

  Biochemistry, 2012, 51, 1598-1606

59.    The roles of Rhodobacter sphaeroides copper chaperones PCuAC and Sco (PrrC) in the assembly of the copper centers of the aa3-type and the cbb3-type cytochrome c oxidases

 Thompson AK, Gray J, Liu A, Hosler JP*

  Biochim. Biophys. Acta , 2012, 1817, 955-964

58.    Synthesis, characterisation, and preliminary in vitro studies of vanadium(IV) complexes with a schiff base and thiosemicarbazones as mixed ligands

 Lewis NA, Liu F, Seymour L, Magnusen A, Erves TR, Arca JF, Beckford FA, Venkatraman R, González-Sarrías A, Fronczek FR, VanDerveer DG, Seeram NP, Liu A, Jarrett WJ, Holder AH*

  Eur. J. Inorg. Chem., 2012, 4, 664-677

57.    Mutagenesis of tryptophan199 suggests that electron hopping is required for MauG-dependent tryptophan tryptophylquinone biosynthesis

 Tarboush NA, Jensen LMR, Yukl ET, Geng J, Liu A, Wilmot CM, and Davidson VL

  Proc. Natl. Acad. Sci. U.S.A., 2011, 108(41), 16956-16961  

56.    The reactivation mechanism of tryptophan 2,3-dioxygenase by hydrogen peroxide

 Fu R, Gupta R, Geng J, Dornevil K, Wang S, Hendrich MP, and Liu A*

 J. Biol. Chem., 2011, 268, 26541-26554


55.  Nature's strategy for oxidizing tryptophan: EPR and Mšssbauer characterization of the unusual high-valent heme iron intermediates. Book Chapter 15 in: Mossbauer Spectroscopy:  Applications in Chemistry, Biology, Industry, and Nanotechnology. 

      Dornevil K and Liu A,* edited by Virender K. Sharma, Goestar Klingelhoefer, and Tetsuaki Nishida, 2013, pp. 315-323


54.  Redox and oxygen sensing in the regulation of transcription by metalloproteins. Book Chapter 8 in: Molecular Basis of Oxidative Stress: Chemistry, Mechanisms, and Disease Pathogenesis.

       Rehmani I, Liu F and Liu A,* edited by Frederick A. Villamena, John Wiley & Sons, Inc., 2013, pp. 179-201


53.  The tightly bound calcium of MauG is required for tryptophan tryptophylquinone cofactor biosynthesis

Shin S, Feng M, Chen Y, Jensen LMR, Tachikawa H, Wilmot CM, Liu A, and Davidson VL*

Biochemistry, 2011, 50, 144-150


52.  Proline 96 of the copper ligand loop of amicyanin regulates electron transfer from methylamine dehydrogenase by positioning other residues at the protein-protein interface

Choi M, Sukumar N, Mathews FS, Liu A, and Davidson VL*

Biochemistry, 2011, 50, 1265-1273


51.  EPR and Mossbauer spectroscopy show inequivalent hemes in tryptophan dioxygenase

Gupta R, Fu R, Liu A, and Hendrich MP*

J. Am. Chem. Soc., 2010, 132, 1098-1109


50.  Mutagenic analysis of Cox11 of Rhodobacter sphaeroides: Insights into the assembly of CuB of cytochrome c oxidase

Thompson, AK, Smith D, Gray J, Carr HS, Liu A, Winge DR, Hosler JP* 

Biochemistry, 2010, 49, 5651-5661


49.  Heme iron nitrosyl complex of MauG reveals efficient redox equilibrium between hemes with only one heme exclusively binding exogenous ligands

Fu R, Liu F, Davidson VL, and Liu A*

Biochemistry, 2009, 48(49), 11603-11605


48.  Electron Paramagnetic Resonance (EPR) in Enzymology

       Liu A

       Wiley Encyclopedia of Chemical Biology, 2009, 1, 591-601, John Wiley & Sons, Inc.


47.  A single EF-hand isolated from STIM1 forms dimer in the absence and presence of Ca2+

Huang Y, Zhou Y, Wong HC, Chen Y, Wang S, Castiblanco A, Liu A, Yang JJ*

FEBS J. 2009, 276, 5589-5597


46.  Defining the role of the axial ligand of the type 1 copper site in amicyanin by replacement of methionine with leucine

Choi M, Sukumar N, Liu A, and Davidson VL*

Biochemistry, 2009, 48, 9174-9184


45.  A catalytic di-heme bis-Fe(IV) form of MauG, Alternative to an Fe(IV)=O porphyrin radical

       Li X, Fu R, Lee S, Krebs C, Davidson VL,* and Liu A*

       Proc. Natl. Acad. Sci. U. S. A., 2008, 105(25), 8597-8600 (PNAS Direct Submission)  


44.  Kinetic and physical evidence that the di-heme enzyme MauG tightly binds to a biosynthetic precursor of methylamine dehydrogenase with incompletely formed tryptophan tryptophylquinone

Li X, Fu R, Liu A*, and Davidson VL*

Biochemistry, 2008, 47, 2908–2912

43.  Purification and characterization of the epoxidase catalyzing the formation of fosfomycin from Pseudomonas syringae

Munos JW, Moon S-J, Mansoorabadi SO, Hong L, Yan F, Liu A, and Liu H-w*

      Biochemistry, 2008, 47, 8726–8735


42.  Amidohydrolase Superfamily

Liu A*, Li T, and Fu R

Encyclopedia of Life Sciences (September 2007), John Wiley & Sons, Ltd: Chichester [DOI: 10.1002/9780470015902.a0020546] (Invited Review).


41.  Determination of the substrate binding mode to the active site iron of (S)-2-hydroxypropyl phosphonic acid epoxidase using 17O-enriched substrates and substrate analogues

Yan F, Moon S-J, Liu P, Zhao Z, Lipscomb JD, Liu A, and Liu H-w*

Biochemistry, 2007, 46, 12628-12638


40.  Detection of transient intermediates in the metal-dependent non-oxidative decarboxylation catalyzed by α-amino-β-carboxymuconic-ε-semialdehyde decarboxylase

Li T, Ma J, Hosler JP, Davidson VL, and Liu A*

J. Am. Chem. Soc., 2007, 129, 9278-9279


39.  Crystallographic analysis of α-amino-β-carboxymuconic-ε-semialdehyde decarboxylase: Insight into the active site and catalytic mechanism of a novel decarboxylation reaction

Martynowski D., Eyobo Y., Li T, Yang K., Liu A,* and Zhang H*

Biochemistry 2006, 45, 10412-10421


38.  Transition metal-catalyzed nonoxidative decarboxylation reactions

Liu A* and Zhang H

Biochemistry, 2006, 45, 10407-10411. (Note: This is a New Concept paper)


37.  α-Amino-b-carboxymuconic-ε-semialdehyde decarboxylase (ACMSD) is a new member of the amidohydrolase superfamily

Li T, Iwaki H, Fu R, Hasegawa Y, Zhang H, Liu A*

Biochemistry, 2006, 45, 6628-6634


36.  The mechanism of inactivation of 3-hydroxyanthranilate-3,4-dioxygenase by 4-chloro-3 hydroxyanthranilate

Colabroy KL, Zhai H, Li T, Ge Y, Zhang Y, Liu A, Ealick SE, McLafferty FW, and Begley TP*

Biochemistry, 2005, 44, 7623–7631


35.  Kinetic and spectroscopic characterization of ACMSD from Pseudomonas fluorescens reveals a pentacoordinate mononuclear metallocofactor

Li T, Walker AL, Iwaki H, Hasegawa Y, Liu A*

J. Am. Chem. Soc., 2005, 127, 12282–12290    Note: This is the first paper published by this Metalloprotein Lab.


34.  Site-directed mutagenesis and spectroscopic studies of the iron-binding site of (S)-2 hydroxypropylphosphonic acid epoxidase

Yan F, Li T, Lipscomb JD, Liu A, and Liu HW*

Arch. Biochem. Biophys., 2005, 442, 82–91


33.  An engineered CuA amicyanin capable of intramolecular electron transfer reactions

Jones LH, Liu A, and Davidson VL*

J. Biol. Chem., 2003, 278, 47269–47274


32.  MauG, a novel di-heme protein required for tryptophan tryptophylquinone biogenesis

Wang Y., Graichen ME, Liu A, Pearson AR, Wilmot CM, and Davidson VL*

Biochemistry, 2003, 42, 7318–7325



31.  Substrate radical intermediates in soluble methane monooxygenase

 Liu A, Jin Y, Zhanga J, Brazeaua BJ and Lipscomb JD.

 Biochem. Biophys. Res. Commun., 2005, 338, 254–261


30.  O2- and α-ketoglutarate-dependent tyrosyl radical formation in TauD, an α-keto acid dependent non-heme iron dioxygenase

        Ryle MJ, Liu A, Muthukumaran RB, Koehntop KD, McCracken J, Que L Jr., and Hausinger RP. Biochemistry, 2003, 42, 1854–1862


29.  Biochemical and spectroscopic studies on (S)-2-hydroxypropylphosphonic acid epoxidase: a novel mononuclear non-heme iron enzyme

        Liu P, Liu A, Yan F, Wolfe MD, Lipscomb JD, and Liu HW

        Biochemistry, 2003, 42, 11577–11586


28.  Interconversion of two oxidized forms of taurine/α-ketoglutarate dioxygenase, a nonheme iron hydroxylase: Evidence for bicarbonate binding

        Ryle MJ, Koehntop KD, Liu A, Que L Jr, and Hausinger RP

Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 3790–3795


27.  Reduction of Escherichia coli ribonucleotide reductase with ferrocene derivatives

        Liu A, Leese DN, Swarts JC, and Sykes AG

Inorg. Chim. Acta, 2002, 337, 83–90 (special edition, invited paper).


26.   Resonance Raman studies of the Fe(II)-a-keto acid chromophore

Ho RYN, Mehn MP, Hegg EL, Liu A, Ryle MJ, Hausinger RP, and Que L Jr

         J. Am. Chem. Soc., 2001, 123, 5022–5029


25.   Alternative reactivity of an α-ketoglutarate-dependent Fe(II) oxygenase: enzyme self hydroxylation

Liu A, Ho RYN, Que L Jr, Ryle MJ, and Hausinger RP

         J. Am. Chem. Soc., 2001, 123, 5126–5127



24.   Chemical reduction of the diferric-radical center in protein R2 from mouse ribonucleotide reductase is independent of the proposed radical transfer pathway

         Davydov A, Ohrstrom M, Liu A, and Graslund A

         Inorg. Chim. Acta, 2002, 331, 65–72


23.  EPR evidence for a novel interconversion of [3Fe-4S]+ and [4Fe-4S]+ clusters with endogenous iron and sulfide in anaerobic ribonucleotide reductase activase in vitro

        Liu A and GrŠslund A

        J. Biol. Chem., 2000, 275, 12367–12373


22.  Yeast ribonucleotide reductase—a new type of ribonucleotide reductase with a heterodimeric iron-radical containing subunit

        Chabes A, Domkin V, Larsson G, Liu A, Graslund A, Wijmenga S, and Thelander L

        Proc. Natl. Acad. Sci. U. S. A., 2000, 97, 2474–2479


21.  Heterogeneity of the local electrostatic environment of the tyrosyl radical in Mycobacterium tuberculosis ribonucleotide reductase observed by high-field EPR spectroscopy

        Liu A, Barra AL, Rubin H, Lu G, and GrŠslund A

        J. Am. Chem. Soc., 2000, 122, 1974–1978


20.  The anaerobic ribonucleotide reductase from Lactococcus lactis – catalytic properties and allosteric regulation of the pure enzyme system

       Torrents E, Buist G, Liu A, Eliasson R, Gibert I, Graslund A, and Reichard P

       J. Biol. Chem., 2000, 275, 2463–2471


19.  EPR evidence of two structurally different ferric sites in Mycobacterium tuberculosis ribonucleotide reductase R2-2 protein

        Davydov A, Liu A, and Graslund A.

        J. Inorg. Biochem., 2000, 80, 213–218



18.  Sequential mechanism of methane dehydrogenation over metal oxide and carbide catalysts

        Zhou T, Liu A, Mo Y, and Zhang H

        J. Phys. Chem. A, 2000, 104, 4505–4513


17.  The interaction between iron and the protein radical in aerobic and anaerobic ribonucleotide reductases

        Liu A. Doctoral Thesis, Akademitryck AB 2000, Stockholm, Sweden, ISBN 91-7265-101-6, pp. 1-46


16.  New paramagnetic species formed at the expense of the transient tyrosyl radical in mutant  protein R2 F208Y of Escherichia coli ribonucleotide reductase

        Liu A, Sahlin M, Potsch S, Sjoberg BM, Graslund A

        Biochem. Biophys. Res. Commun., 1998, 246, 740–745


15.  The tyrosyl free radical of recombinant ribonucleotide reductase from Mycobacterium tuberculosis is located in a rigid hydrophobic pocket

        Liu A, Potsch S, Davydov A, Barra A, Rubin H, and Graslund A

        Biochemistry, 1998, 37, 16369–16377



14.  Enzymatic mechanism of Fe-only hydrogenase: density functional study on H-H making/breaking at the diiron cluster with concerted proton and electron transfers

      Zhou T, Mo Y, Liu A, and Tsai KR

      Inorg. Chem., 2004, 43, 923–930


13.  Optimal group symmetric localized molecular orbitals

       Zhou T and Liu A.

      Theoret. Chim. Acta, 1994, 88, 375-381.


12.  Symmetry-adaptation of configuration basis in MCSCF method

     Zhou T and Liu A.

    Theoret. Chim. Acta, 1994, 89, 137-145


11.  Study of localized molecular orbitals using group theory methods and its approach to the multi-electron correlation problem: The symmetric reduction of multi-center integrals in multiconfigurational self-consistent-field approach

      Zhou T and Liu A

      J. Comp. Chem., 1994, 15, 858-865


10.  Oxygenation of methane to methanol by methane monooxygenase of Methylomonas species GYJ-3

     Liu A and Li S

     J. Nat. Gas Chem.., 1993, 2, 109–118


9.  Formation of propylene oxide by Methylomonas GYJ-3 in a gas-solid bioreactor

     Li S, Gao C, and Liu A

     Chinese Chem. Lett., 1991, 4, 303–306


8.  Studies on rationalization of nitrogenase active center models*novel nitrogenase inhibitors and promoters as chemical probes

      Liu A, Zhang H, Yuan Y, Xu L, Wan H, and Tsai KR

     Fen Zi Cui Hua (Chinese Journal of Molecular Catalysis) , 1994, 8, 81–85

7.  Effects of bidentate ligands dppe and dppm on spontaneous self-assembly of Mo-Fe-S cluster compounds

      Liu A, Yuan Y, Zhou M, Yong R, Zhang H, Wan H, and Tsai KR

     Journal of Xiamen University (Natural Science) , 1994, 33(6), 809–813

6.  Structural information of nitrogenase active-center clusters deduced from the EHMO study

      Liu A, Zhou T, Wan H, and Tsai KR

     Chemical Journal of Chinese Universities, 1993, 14, 996–999

5.  The effects of gamma-ray irradiation of PET electret

      Liu A, Wu H, and Zhou Y

     Journal of Xiamen University (Natural Science) , 1993, 32(4), 457–461

4.  The effects of gamma-ray irradiation of PET electret

      Liu A, Wu H, and Zhou Y

     Journal of Xiamen University (Natural Science), 1993, 32(4), 457–461

3.  Stereoselectivity of styrene oxide from styrene epoxidation by Methylomonas sp. GYJ3

      Liu A, Li S, Miao D, Liu P, and Yu W

     Fen Zi Cui Hua (Chinese Journal of Molecular Catalysis), 1991, 5, 377–381


2.  Isolation and purification of methane monooxygenase from Methylomonas species GYJ-3

     Liu A, Li S, Miao D, Yu W, Zhang F, and Su P

     Chinese Chem. Lett., 1991, 2, 419–422


1. Preparative slab electrofocusing of methane monooxygenase from a type I methanotroph Methylomonas GYJ-3

     Liu A, Li S, Yu W, Zhang F, Chen J, and Su P

    Biochem. I., 1990, 22, 959-965